[1] 沈安江, 郑剑锋, 陈永权, 等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 2016, 43(3): 340-349.
SHEN Anjiang, ZHENG Jianfeng, CHEN Yongquan, et al. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 340-349.
[2] 杜金虎, 潘文庆. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 石油勘探与开发, 2016, 43(3): 327-339.
DU Jinhu, PAN Wenqing. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 327-339.
[3] 王招明, 于红枫, 吉云刚, 等. 塔中地区海相碳酸盐岩特大型油气田发现的关键技术[J]. 新疆石油地质, 2011, 32(3): 218-223.
WANG Zhaoming, YU Hongfeng, JI Yungang, et al. Key technologies for discovery of giant marine carbonate oil-gas fields in Tazhong Area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 218-223.
[4] 韩剑发, 张海祖, 于红枫, 等. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探[J]. 岩石学报, 2012, 28(3): 769-782.
HAN Jianfa, ZHANG Haizu, YU Hongfeng, et al. Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong Uplift[J]. Acta Petrologica Sinica, 2012, 28(3): 769-782.
[5] 丁长辉, 周红波, 路鹏程, 等. 塔中低凸起古生界构造特征及演化[J]. 大地构造与成矿学, 2009, 33(1): 148-153.
DING Changhui, ZHOU Hongbo, LU Pengcheng, et al. The Paleozoic structural features and its evolution of in the Tazhong Low Uplift, Xinjiang[J]. Geotectonica Et Metallogenia, 2009, 33(1): 148-153.
[6] 苗继军, 李明和, 杜洪莲, 等. 塔中低凸起东部构造解析及勘探领域分析[J]. 天然气地球科学, 2010, 21(2): 257-262.
MIAO Jijun, LI Minghe, DU Honglian, et al. Structural interpretation in Eastern low bulge of central Tarim Uplift and new areas of exploration[J]. Natural Gas Geoscience, 2010, 21(2): 257-262.
[7] 任建业, 胡德胜, 阳怀忠, 等. 塔中隆起带断裂系统及其对碳酸盐岩台地的控制[J]. 中国地质, 2011, 38(4): 935-944.
REN Jianye, HU Desheng, YANG Huaizhong, et al. Fault system and its control of carbonate platform in Tazhong uplift area, Tarim Basin[J]. Geology in China, 2011, 38(4): 935-944.
[8] 李传新, 王晓丰, 李本亮. 塔里木盆地塔中低凸起古生代断裂构造样式与成因探讨[J]. 地质学报, 2010, 84(12): 1727-1734.
LI Chuanxin, WANG Xiaofeng, LI Benliang. Paleozoic faulting structure styles of the Tazhong Low Uplift, Tarim Basin and its mechanism[J]. Acta Geologica Sinica, 2010, 84(12): 1727-1734.
[9] 邬光辉, 杨海军, 屈泰来, 等. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用[J]. 岩石学报, 2012, 28(3): 793-805.
WU Guanghui, YANG Haijun, QU Tailai, et al. The fault system characteristics and its controlling roles on marine carbonate hydrocarbon in the Central uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 793-805.
[10] 汤良杰, 漆立新, 邱海峻, 等. 塔里木盆地断裂构造分期差异活动及其变形机理[J]. 岩石学报, 2012, 28(8): 2569-2583.
TANG Liangjie, QI Lixin, QIU Haijun, et al. Poly-phase differential fault movement and hydrocarbon accumulation of the Tarim Basin, NW China[J]. Acta Petrologica Sinica, 2012, 28(8): 2569-2583.
[11] 杨海军, 韩剑发, 李本亮, 等. 塔中低凸起东端冲断构造与寒武系内幕白云岩油气勘探[J]. 海相油气地质, 2011, 16(2): 1-8.
YANG Haijun, HAN Jianfa, LI Benliang, et al. Characteristics of thrust nappe in the eastern segment of Tazhong arch and oil prospecting of Cambrian dolostone reservoirs, Tarim Basin[J]. Marine Origin Petroleum Geology, 2011, 16(2): 1-8.
[12] 陈轩, 刘银河, 林年添, 等. 塔中低凸起北斜坡奥陶系碳酸盐岩储层特征及其勘探意义[J]. 石油地球物理勘探, 2011, 46(3): 463-470.
CHEN Xuan, LIU Yinhe, LIN Niantian, et al. Characteristics and exploration significance of Ordovician carbonate reservoirs in the North Slope of Tazhong Lower Uplift, Tarim Basin[J]. Oil Geophysical Prospecting, 2011, 46(3): 463-470.
[13] 罗春树, 杨海军, 李江海, 等. 塔中奥陶系优质储集层特征及断裂控制作用[J]. 石油勘探与开发, 2011, 38(6): 716-724.
LUO Chunshu, YANG Haijun, LI Jianghai, et al. Characteristics of high quality Ordovician reservoirs and controlling effects of faults in the Tazhong Area, Tarim Basin[J]. Petroleum Exploration and Development, 2011, 38(6): 716-724.
[14] 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13.
WANG Zhaoming, XIE Huiwen, CHEN Yongquan, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13.
[15] 张丽娟, 邬光辉, 何曙, 等. 碳酸盐岩断层破碎带构造成岩作用: 以塔中Ⅰ号断裂带为例[J]. 岩石学报, 2016, 32(3): 922-934.
ZHANG Lijuan, WU Guanghui, HE Shu, et al. Structural diagenesis in carbonate fault damage zone: A case study of the No.1 fault zone in the Tarim Basin[J]. Acta Petrologica Sinica, 2016, 32(3): 922-934.
[16] 胡再元, 孙东, 胡圆圆, 等. 断裂系统对碳酸盐岩储层的控制作用: 以塔里木盆地塔中Ⅲ区奥陶系为例[J]. 天然气地球科学, 2015, 26(S1): 97-108.
HU Zaiyuan, SUN Dong, HU Yuanyuan, et al. The controlling effect of carbonate fault system on reservoirs: A case study in the 3rd block of Tazhong Area[J]. Natural Gas Geoscience, 2015, 26(S1): 97-108.
[17] 韩杰, 江杰, 张敏, 等. 断裂及其裂缝发育带在塔中油气勘探中的意义[J]. 西南石油大学学报(自然科学版), 2015, 37(2): 11-20.
HAN Jie, JIANG Jie, ZHANG Min, et al. Significance of fault and fracture developing area in oil and gas exploration in Tazhong[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(2): 11-20.
[18] 崔军文, 唐哲民. 塔里木盆地构造格架和构造应力场分析[J]. 岩石学报, 2011, 27(1): 231-242.
CUI Junwen, TANG Zhemin. Tectonic framework of the Tarim Basin and its tectonic stress field analysis[J]. Acta Petrologica Sinica, 2011, 27(1): 231-242.
[19] 张新超, 孙赞东, 赵俊省, 等. 塔中北斜坡走滑断裂断距对碳酸盐岩油气藏的影响[J]. 现代地质, 2014, 28(5): 1017-1022.
ZHANG Xinchao, SUN Zandong, ZHAO Junsheng, et al. Study on the influence of strike-slip fault displacement on reservoir in northern Slope, Tazhong Area[J]. Geoscience, 2014, 28(5): 1017-1022.
[20] CHESTER F M, LOGAN J M. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California[J]. Pure and Applied Geophysics, 1986, 124(1/2): 79-106.
[21] JAMISON W R, STEARNS D W. Tectonic deformation of Wingate sandstone, Colorado National Monument[J]. AAPG Bulletin, 1982, 66(12): 2584-2608.
[22] CHESTER F M, EVANS J P, BIEGEL R L. Internal structure and weakening mechanisms of the San Andreas Fault[J]. Journal of Geophysical Research, 1993, 98(B1): 771-786.
[23] SIBSON R H. Fault rock and fault mechanisms[J]. Journal of the Geological Society, London, 1977, 133(3): 191-213.
[24] ANNETTE G M, IAN D. Damage zone geometry around fault tips[J]. Journal of Structural Geology, 1995, 17(4): 1011-1024.
[25] GAMOND J F. Displacement features associated with fault zones: A comparison between observed examples and experimental models[J]. Journal of Structural Geology, 1983, 5(1): 33-45.
[26] 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316.
LYU Yanfang, WANG Wei, HU Xinlei, et al. Quantitative evaluation method of fault lateral sealing[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316.
[27] COOK J E, DUNNE W M, ONASCH C M. Development of a dilatant damage zone along a thrust relay in a low-porosity quartz arenite[J]. Journal of Structural Geology, 2006, 28(5): 776-792.
[28] LAVENU A P C, LAMARCHE J, GALLOIS A, et al. Tectonic versus diagenetic origin of fractures in a naturally fractured carbonate reservoir analog (Nerthe anticline, southeastern France)[J]. AAPG Bulletin, 2013, 97(12): 2207-2232.
[29] FLOREZ-NINO J, AYDIN A, MAVKO G, et al. Fault and fracture systems in a fold and thrust belt: An example from Bolivia[J]. AAPG Bulletin, 2005, 89(4): 471-493.
[30] MITCHELL T M, FAULKNER D R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile[J]. Journal of Structural Geology, 2009, 31(8): 802-816.
[31] ANTONELLINI M, MOLLEMA P N. A natural analog for a fractured and faulted reservoir in dolomite: Triassic Sella Group, Northern Italy[J]. AAPG Bulletin, 2000, 84(3): 314-344.
[32] JACQUEMYN C, HUYSMANS M, HUNT D, et al. Multi-scale three- dimensional distribution of fracture- and igneous intrusion-controlled hydrothermal dolomite from digital outcrop model, Latemar platform, Dolomites, northern Italy[J]. AAPG Bulletin, 2015, 99(5): 957-984.
[33] YOUNG-SEO K, DAVID C P P, DAVID J S. Fault damage zones[J]. Journal of Structural Geology, 2004, 26(3): 503-517.
[34] PUTZ-PERRIER M W, SANDERSON D J. Distribution of faults and extensional strain in fractured carbonates of the North Malta Graben[J]. AAPG Bulletin, 2010, 94(4): 435-456.
[35] BISDOM K, GAUTHIER B D M, BERTOTTI G, et al. Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: Implications for naturally fractured reservoir modeling[J]. AAPG Bulletin, 2014, 98(7): 1351-1376.
[36] ZENG L, TANG X, WANG T, et al. The influence of fracture cements in tight Paleogene saline lacustrine carbonate reservoirs, western Qaidam Basin, northwest China[J]. AAPG Bulletin, 2012, 96(11): 2003-2017.
[37] GUERRIERO V, MAZZOLI S, IANNACE A, et al. A permeability model for naturally fractured carbonate reservoirs[J]. Marine and Petroleum Geology, 2013, 40: 115-134.
[38] GONZALEZ G, GERBAULT M, MARTINOD J, et al. Crack formation on top of propagating reverse faults of the Chuculay Fault System, northern Chile: Insights from field data and numerical modeling[J]. Journal of Structural Geology, 2008, 30(6): 791-808.
[39] EEANS J P. Thickness-displacement relationships for fault zones[J]. Journal of Structural Geology, 1990, 12(8): 1061-1065.
[40] SCHOLZ C H, DAWERS N H, YU J Z, et al. Fault growth and fault scaling laws: Preliminary results[J]. Journal of Geophysical Research, 1993, 98(B12): 21951-21961.
[41] CHILDS C, NICOL A, WALSH J J, et al. Growth of vertically segmented normal faults[J]. Journal of Structural Geology, 1996, 18(18): 1389-1397.
[42] JOHRI M, ZOBACK M D, HENNINGS P. A scaling law to characterize fault-damage zones at reservoir depths[J]. AAPG Bulletin, 2014, 98(10): 2057-2079.
[43] 郑多明, 李志华, 赵宽志, 等. 塔里木油田奥陶系碳酸盐岩缝洞储层的定量地震描述[J]. 中国石油勘探, 2011, 16(5): 57-62, 78. ZHENG Duoming, LI Zhihua, ZHAO Kuanzhi, et al. Quantitative seismic characterization of Ordovician fracture-cavity carbonate reservoirs in Tarim Oilfield[J]. China Petroleum Exploration, 2011, 16(5): 57-62, 78.
[44] 朱仕军, 唐绪磊, 朱鹏宇, 等. 碳酸盐岩缝洞储层地震反射波特征及其与油气的关系[J]. 天然气工业, 2014, 34(4): 57-61. ZHU Shijun, TANG Xulei, ZHU Pengyu, et al. Reflection characteristics of seismic waves of carbonate cave reservoirs and their significance to the oil and gas discovery[J]. Natural Gas Industry, 2014, 34(4): 57-61.