油气田开发

人工地震波强化泡沫稳定性微观动力学模型

  • 刘静 ,
  • 夏军勇 ,
  • 刘玺 ,
  • 吴飞鹏 ,
  • 蒲春生
展开
  • 1.中国石油大学(华东)石油工程学院,山东青岛 266580;
    2.中国石油大学(华东)非常规油气开发教育部重点实验室,山东青岛 266580;
    3.大庆油田采油工程研究院,黑龙江大庆 163453;
    4.陕西延长油田股份有限公司志丹采油厂,陕西延安 717500
刘静(1982-),女,河南商丘人,博士,中国石油大学(华东)讲师,主要从事非常规油气物理化学强化开采理论与技术方面的研究工作。地址:山东省青岛市黄岛区长江西路66号,中国石油大学(华东)石油工程学院,邮政编码:266580。E-mail: liujing4522009@163.com

收稿日期: 2020-04-13

  修回日期: 2020-10-20

  网络出版日期: 2021-01-19

基金资助

国家自然科学基金(51904320,51874339); 中央高校基本科研业务费专项资金(18CX02095A)

A micro-kinetic model of enhanced foam stability under artificial seismic wave

  • LIU Jing ,
  • XIA Junyong ,
  • LIU Xi ,
  • WU Feipeng ,
  • PU Chunsheng
Expand
  • 1. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China;
    2. Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum, Qingdao 266580, China;
    3. Daqing Oilfield Production Technology Institute, Daqing 163453, China;
    4. Zhidan Oil Production Plant, Shaanxi Yanchang Petroleum (Group) Co., LTD, Yan’an 717500, China

Received date: 2020-04-13

  Revised date: 2020-10-20

  Online published: 2021-01-19

摘要

针对低频人工地震波对泡沫稳定性的协同强化效应,基于垂直液膜排液模型和波动理论,建立了低频人工地震波激励下泡沫稳定性微观动力学模型;采用高阶偏微分方程组无因次变换、隐式和显式差分方法对该模型进行复合求解并验证了模型的可靠性,对低频人工地震波作用下的泡沫液膜厚度、表面活性剂浓度分布及排液速度等进行了定量化分析。研究表明,低频振动可降低排液后期泡沫液膜中表面活性剂浓度最大值与最小值之差,强化Marangoni效应的作用效果,提高了泡沫液膜的稳定性。当振动频率接近泡沫液膜固有频率时振动效果最佳,最佳振动频率约为50 Hz。振动加速度越大,泡沫液膜中表面活性剂浓度的恢复速度越快,Marangoni效应延缓泡沫液膜排液的能力越强,稳泡性能越好,但振动加速度并非越大越好,最佳振动加速度约为0.5倍重力加速度。合理的振动参数会大幅提高Marangoni效应的作用效果,表面活性剂初始浓度越小,振动提高Marangoni效应效果越好。图11表2参19

本文引用格式

刘静 , 夏军勇 , 刘玺 , 吴飞鹏 , 蒲春生 . 人工地震波强化泡沫稳定性微观动力学模型[J]. 石油勘探与开发, 2021 , 48(1) : 185 -192 . DOI: 10.11698/PED.2021.01.17

Abstract

To get a deeper understanding on the synergistic enhancement effect of low frequency artificial seismic wave on foam stability, a micro-kinetic model of enhanced foam stability under low frequency artificial seismic wave is established based on a vertical liquid film drainage model and elastic wave theory. The model is solved by non-dimensional transformation of the high order partial differential equations and a compound solution of implicit and explicit differences and is verified to be accurate. The foam film thickness, surfactant concentration distribution and drainage velocity under the action of low frequency artificial seismic wave are quantitatively analyzed. The research shows that low-frequency vibration can reduce the difference between the maximum and minimum concentrations of surfactant in the foam liquid film at the later stage of drainage, enhance the effect of Marangoni effect, and improve the stability of the foam liquid film. When the vibration frequency is close to the natural frequency of the foam liquid film, the vibration effect is the best, and the best vibration frequency is about 50 Hz. The higher the vibration acceleration, the faster the recovery rate of surfactant concentration in the foam liquid film is. The higher the vibration acceleration, the stronger the ability of Marangoni effect to delay the drainage of foam liquid film and the better the foam stability is. It is not the higher the vibration acceleration, the better. The best vibration acceleration is about 0.5 times of gravity acceleration. Reasonable vibration parameters would greatly enhance the effect of Marangoni effect. The smaller the initial concentration of surfactant, the better the vibration works in enhancing Marangoni effect.

参考文献

[1] 李松岩, 王麟, 韩瑞, 等. 裂缝性致密油藏超临界CO2泡沫驱规律实验研究[J]. 油气地质与采收率, 2020, 27(1): 29-35.
LI Songyan, WANG Lin, HAN Rui, et al.Experimental study on supercritical CO2 foam flooding in fractured tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 29-35.
[2] 袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668.
YUAN Shiyi, WANG Qiang.New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4): 657-668.
[3] 李兆敏, 徐正晓, 李宾飞, 等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 118-127.
LI Zhaomin, XU Zhengxiao, LI Binfei, et al.Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum (Natural Science Edition), 2019, 43(5): 118-127.
[4] 刘珑, 范洪富, 孙江河, 等. 纳米颗粒稳定泡沫驱油研究进展[J]. 油田化学, 2019, 36(4): 748-754.
LIU Long, FAN Hongfu, SUN Jianghe, et al.Research progress of nanoparticles-stabilized foam for EOR[J]. Oilfield Chemistry, 2019, 36(4): 748-754.
[5] 付亚峰, 印万忠, 姚金, 等. 绿泥石颗粒效应对泡沫稳定性的影响[J]. 中南大学学报(自然科学版), 2018, 49(8): 1857-1862.
FU Yafeng, YIN Wanzhong, YAO Jin, et al.Study on stability of flotation foam influenced by particle effect of chlorite[J]. Journal of Central South University (Natural Science Edition), 2018, 49(8): 1857-1862.
[6] 张景楠, 狄勤丰, 华帅, 等. 泡沫驱油核磁共振实验及泡沫动态稳定性评价[J]. 石油勘探与开发, 2018, 45(5): 853-860.
ZHANG Jingnan, DI Qinfeng, HUA Shuai, et al.Nuclear magnetic resonance experiments on foam flooding and evaluation of foam dynamic stability[J]. Petroleum Exploration and Development, 2018, 45(5): 853-860.
[7] 熊春明, 曹光强, 张建军, 等. 适应中国主要气田的纳米粒子泡排剂系列[J]. 石油勘探与开发, 2019, 46(5): 966-973.
XIONG Chunming, CAO Guangqiang, ZHANG Jianjun, et al.Nanoparticle foaming agents for major gas fields in China[J]. Petroleum Exploration and Development, 2019, 46(5): 966-973.
[8] SCHWARTZ L W, ROY R V.Modeling draining flow in mobile and immobile soap films[J]. Journal of Colloid and Interface Science, 1999, 218(1): 309-323.
[9] MYSELS K J, SHINODA K, FRANKEL S. Soap films: Studies of their thinning and a bibliography[M]. New York: Pergamon Press, 1959.
[10] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响[J]. 物理学报, 2017, 66(18): 147-159.
YE Xuemin, YANG Shaodong, LI Chunxi.Effect of concentration- dependent disjoining pressure on drainage process of vertical liquid film[J]. Acta Physica Sinica, 2017, 66(18): 147-159.
[11] 叶学民, 杨少东, 李春曦. 分离压和表面黏度的协同作用对液膜排液过程的影响[J]. 物理学报, 2017, 66(19): 178-190.
YE Xuemin, YANG Shaodong, LI Chunxi.Synergistic effects of disjoining pressure and surface viscosity on film drainage process[J]. Acta Physica Sinica, 2017, 66(19): 178-190.
[12] 杨少东, 叶学民, 李春曦. 活性剂浓度分布对液膜排液过程的影响[J]. 计算物理, 2018, 35(5): 577-586.
YANG Shaodong, YE Xuemin, LI Chunxi.Effect of surfactant concentration distribution on film drainage[J]. Chinese Journal of Computational Physics, 2018, 35(5): 577-586.
[13] 张磊. 低频谐振波对N2泡沫复合驱油效果影响规律实验研究[D]. 西安: 西安石油大学, 2012.
ZHANG Lei.Low-frequency resonant wave on N2 foam flooding effect of the influence of experimental study[D]. Xi’an: Xi’an Petroleum University, 2012.
[14] 李星红, 徐加祥, 刘玺, 等. 振动-空气泡沫驱封堵性能评价与矿场试验研究[J]. 西安石油大学学报(自然科学版), 2017, 32(1): 83-88.
LI Xinghong, XU Jiaxiang, LIU Xi, et al.Plugging performance evaluation and field test of vibration-air foam flooding[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2017, 32(1): 83-88.
[15] 刘静, 夏军勇, 刘玺, 等. 低频波对泡沫稳定性协同强化效应[J]. 石油学报, 2020, 41(5): 584-591.
LIU Jing, XIA Junyong, LIU Xi, et al.Synergistic reinforcement effect of low-frequency waves for foam stability[J]. Acta Petrolei Sinica, 2020, 41(5): 584-591.
[16] 刘静, 蒲春生, 林承焰, 等.低频振动单相不可压缩流体细管流动微观动力学数学模型研究[J]. 天然气地球科学, 2014, 25(10): 1610-1613.
LIU Jing, PU Chunsheng, LIN Chengyan, et al.Mathematical model of microscopic dynamics about single-phrase incompressible fluid flows in thin tube under low frequency vibration[J]. Science Technology and Engineering, 2014, 25(10): 1610-1613.
[17] 杨少东. 分离压和表面粘度对液膜排液过程影响研究[D]. 保定: 华北电力大学, 2018.
YANG Shaodong.Investigation of effect of disjoining pressure and surface viscosity on film drainage process[D]. Baoding: North China Electric Power University, 2018.
[18] 牟静, 陶超, 朱哲民, 等. 液体中包膜气泡的非线性振动特性[R]. 济南: 中国声学学会2003年青年学术会议, 2003.
MU Jing, TAO Chao, ZHU Zhemin, et al.The nonlinear oscillation characteristics of gas bubble with an elastic solid layer in liquid[R]. Jinan: 2003 Youth Academic Conference of Chinese acoustic Society, 2003.
[19] 吴化勇. 考虑残余应力影响的谐振式生化传感器微膜动态特性研究[D]. 济南: 山东大学, 2015.
WU Huayong.Dynamic characteristics of micro-diaphragm of resonant biochemical sensors considering the effect of residual stress[D]. Jinan: Shandong University, 2015.
文章导航

/