油气勘探

中国海相超深层油气地质条件、成藏演化及有利勘探方向

  • 李建忠 ,
  • 陶小晚 ,
  • 白斌 ,
  • 黄士鹏 ,
  • 江青春 ,
  • 赵振宇 ,
  • 陈燕燕 ,
  • 马德波 ,
  • 张立平 ,
  • 李宁熙 ,
  • 宋微
展开
  • 中国石油勘探开发研究院,北京100083
李建忠(1968-),男,河南辉县人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事石油地质综合研究及勘探评价工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院,邮政编码:100083。E-mail: lijizh@petrochina.com.cn

收稿日期: 2020-04-06

  修回日期: 2021-01-06

  网络出版日期: 2021-01-19

基金资助

国家重点研发计划“深地资源勘查开采”(2017YFC0603106)

Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China

  • LI Jianzhong ,
  • TAO Xiaowan ,
  • BAI Bin ,
  • HUANG Shipeng ,
  • JIANG Qingchun ,
  • ZHAO Zhenyu ,
  • CHEN Yanyan ,
  • MA Debo ,
  • ZHANG Liping ,
  • LI Ningxi ,
  • SONG Wei
Expand
  • Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

Received date: 2020-04-06

  Revised date: 2021-01-06

  Online published: 2021-01-19

摘要

通过对中国海相超深层油气区域构造背景、石油地质条件分析及典型地区(古)油气藏解剖,研究海相超深层油气成藏演化过程及富集主控因素。中国海相超深层油气主要分布在四川、塔里木和鄂尔多斯3大克拉通盆地,界定其埋藏深度大于6 000 m,赋存层系为前寒武系及下古生界为主的古老海相层系。中国海相超深层烃源岩发育受全球超大陆聚、散旋回为背景的克拉通裂陷及克拉通坳陷控制,在四川盆地发育层系最多、塔里木盆地其次、鄂尔多斯盆发育规模有待进一步证实;储集层以碳酸盐岩为主,储集性能受早期高能滩体、后期叠加溶蚀及断裂作用共同控制;区域盖层包括膏盐岩、泥页岩与致密碳酸盐岩3大类。中国海相超深层普遍经历了两期油藏、古油藏裂解成气(或部分裂解)、裂解气(或高过成熟油气)晚期定型等演化阶段,油气富集受静态和动态地质要素耦合控制,主力生烃中心、高能相带叠加岩溶规模储集层、巨厚膏盐岩或泥页岩盖层、稳定保持圈闭条件是超深层油气富集关键因素。海相超深层具有克拉通内裂陷周缘、克拉通内坳陷周缘和克拉通边缘3个有利勘探方向。图11表1参42

本文引用格式

李建忠 , 陶小晚 , 白斌 , 黄士鹏 , 江青春 , 赵振宇 , 陈燕燕 , 马德波 , 张立平 , 李宁熙 , 宋微 . 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021 , 48(1) : 52 -67 . DOI: 10.11698/PED.2021.01.05

Abstract

By analyzing the structural background, petroleum geological conditions, and typical regional (paleo) oil and gas reservoirs in marine ultra-deep oil and gas regions in China, this paper reveals the evolution process of marine ultra-deep oil and gas reservoirs and the key controlling factors of accumulation. The marine ultra-deep oil and gas resources in China at burial depth of greater than 6 000 m are mainly distributed in the Precambrian and Lower Paleozoic ancient marine strata in the Sichuan, Tarim and Ordos cratonic basins. The global breakup-convergence cycles of the supercontinent control the evolution of intracratonic rifts, cratonic marginal rifts, and intracratonic depressions. The Sichuan Basin is dominant in source rocks, followed by the Tarim Basin. The early high-energy sedimentary environment and the later dissolution and faulting control the development of high-quality carbonate reservoirs. The regional caprocks are dominated by gypsum salt rocks, shale, and tight carbonate rock. The ultra-deep oil and gas fields in China have generally experienced two stages of oil-reservoir forming, thermal (complete or partial) cracking of oil in paleo-reservoir into gas, and late accumulation of kerogen-cracked gas (high-over mature oil and gas). The oil and gas accumulation is controlled by static and dynamic geological elements jointly. Major hydrocarbon-generation center, high quality and large-scale reservoir resulted from karstification of high energy facies belt, thick gypsum rock or shale caprock, and stable trapping and preservation conditions are the key factors for accumulation of ultra-deep oil and gas. Based on petroleum geological conditions, factors affecting hydrocarbon accumulation and evolution, and the latest exploration knowledge, we propose three favorable exploration directions, i.e. the areas around intracratonic rift and intracratonic depression, and craton margin.

参考文献

[1] 滕吉文, 杨辉. 第二深度空间(5000~10000m)油、气形成与聚集的深层物理与动力学响应[J]. 地球物理学报, 2013, 56(12): 4164-4188.
TENG Jiwen, YANG Hui.Deep physical and a dynamical process for the formation and accumulation of oil and gas reservoirsin the second deep space (5000-1000m)[J]. Chinese Journal of Geophysics, 2013, 56(12): 4164-4188.
[2] 孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6): 641-649.
SUN Longde, ZOU Caineng, ZHU Rukai, et al.Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.
[3] 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192.
MA Yongsheng, CAI Xunyu, ZHAO Peirong.The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[4] 赵文智, 胡素云, 刘伟, 等. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业, 2014, 34(4): 1-9.
ZHAO Wenzhi, HU Suyun, LIU Wei, et al.Petroleum geological features and exploration prospect in deep marine carbonate strata onshaore China: A further discussion[J]. Natural Gas Industry, 2014, 34(4): 1-9.
[5] 白国平, 曹斌风. 全球深层油气藏及其分布规律[J]. 石油与天然气地质, 2014, 35(1): 19-25.
BAI Guoping, CAO Binfeng.Characteristics and distribution patterns of deep petroleum accumulations in the world[J]. Oil & Gas Geology, 2014, 35(1): 19-25.
[6] DYMAN T S, CROVELLI R A, BARTBERGER C E, et al.Worldwide estimates of deep natural gas resources based on the U.S.[J]. Natural Resources Research, 2002, 11(3): 207-218.
[7] 李剑, 佘源琦, 高阳, 等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探, 2019, 24(4): 403-417.
LI Jian, SHE Yuanqi, GAO Yang, et al.Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403-417.
[8] 戴金星, 倪云燕, 秦胜飞, 等. 四川盆地超深层天然气地球化学特征[J]. 石油勘探与开发, 2018, 45(4): 588-597.
DAI Jinxing, NI Yunyan, QIN Shengfei, et al.Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(4): 588-597.
[9] 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469.
JIA Chengzao, PANG Xiongqi.Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469.
[10] 管树巍, 吴林, 任荣, 等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1): 9-22.
GUAN Shuwei, WU Lin, REN Rong, et al.Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1): 9-22.
[11] 赵文智, 王晓梅, 胡素云, 等. 中国元古宇烃源岩成烃特征及勘探前景[J]. 中国科学: 地球科学, 2019, 49(6): 939-964.
ZHAO Wenzhi, WANG Xiaomei, HU Suyun, et al.Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China[J]. SCIENCE CHINA Earth Sciences, 2019, 62(6):909-934.
[12] 翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5): 722-745.
ZHAI Mingguo.Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 2019, 25(5): 722-745.
[13] 陆松年, 李怀坤, 陈志宏, 等. 新元古时期中国古大陆与罗迪尼亚超大陆的关系[J]. 地学前缘, 2004, 11(2): 515-523.
LU Songnian, LI Huaikun, CHEN Zhihong, et al.Relationship between Neoproterozoic cratons of China and the Rodinia[J]. Earth Science Frontiers, 2004, 11(2): 515-523.
[14] 贾承造, 李本亮, 张兴阳, 等. 中国海相盆地的形成与演化[J]. 科学通报, 2007, 52(S1): 1-8.
JIA Chengzao, LI Benliang, ZHANG Xingyang, et al.Formation and evolution of marine basins in China[J]. Chinese Science Bulletin, 2007, 52(S1): 1-8.
[15] 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554.
SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al.Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554.
[16] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 14(3): 278-293.
ZOU Caineng, DU Jinhu, XU Chunchun, et al.Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 14(3): 278-293.
[17] 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13.
MA Xinhua, YANG Yu, WEN Long, et al.Distribution and exploration direction of medium- and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 1-13.
[18] 赵路子, 汪泽成, 杨雨, 等. 四川盆地蓬探1井灯影组灯二段油气勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 1-12.
ZHAO Luzi, WANG Zecheng, YANG Yu, et al.Important discovery in the second member of Dengying Formation in Well Pengtan1 and its significance, Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(3): 1-12.
[19] 杜金虎, 汪泽成, 邹才能, 等. 古老碳酸盐岩大气田地质理论与勘探实践[M]. 北京: 石油工业出版社, 2015.
DU Jinhu, WANG Zecheng, ZOU Caineng, et al. Geologic theory and exploration practice of ancient large carbonate gas field[M]. Beijing: Petroleum Industry Press, 2015.
[20] 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277.
DU Jinhu, ZOU Caineng, XU Chunchun, et al.Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277.
[21] 徐春春, 沈平, 杨跃明, 等. 乐山—龙女寺古隆起震旦系—下寒武统龙王庙组天然气成藏条件与富集规律[J]. 天然气工业, 2014, 34(3): 1-7.
XU Chunchun, SHEN Ping, YANG Yueming, et al.Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Formation reservoirs of the Leshan-Longnüsi Paleohigh, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 1-7.
[22] 魏国齐, 谢增业, 宋家荣, 等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发, 2015, 42(6): 702-711.
WEI Guoqi, XIE Zengye, SONG Jiarong, et al.Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(6): 702-711.
[23] 郝彬, 赵文智, 胡素云, 等. 川中地区寒武系龙王庙组沥青成因与油气成藏史[J]. 石油学报, 2017, 38(8): 863-875.
HAO Bin, ZHAO Wenzhi, HU Suyun, et al.Bitumen genesis and hydrocarbon accumulation history of the Cambrian Longwangmiao Formation in Central Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 863-875.
[24] 张博原. 四川盆地安岳气田储层沥青成因及演化[D]. 北京: 中国地质大学(北京), 2018.
ZHANG Boyuan.The formation and evolution of solid bitumen in the Anyue gas field of the Sichuan Basin[D]. Beijing: China University of Geosciences (Beijing), 2018.
[25] 秦胜飞, 周国晓, 李伟, 等. 四川盆地威远气田水溶气脱气成藏地球化学证据[J]. 天然气工业, 2016, 36(1): 43-51.
QIN Shengfei, ZHOU Guoxiao, LI Wei, et al.Geochemical evidence of water-soluble gas accumulation in the Weiyuan Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(1): 43-51.
[26] 帅燕华, 张水昌, 胡国艺, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系天然气TSR效应及气源启示[J]. 地质学报, 2019, 93(7): 1754-1766.
SHUAI Yanhua, ZHANG Shuichang, HU Guoyi, et al.Thermochemical sulphate reduction of Sinian and Cambrian natural gases in the Gaoshiti-Moxi Area, Sichuan Basin and its enlightment for gas sources[J]. Acta Geologica Sinica, 2019, 93(7): 1754-1766.
[27] WANG Shufang, ZHAO Wenzhi, ZOU Caineng, et al.Organic carbon and stable C-O isotopic study of the Lower Silurian Longmaxi Formation black shales in Sichuan Basin, SW China: Paleoenvironmental and shale gas implications[J]. Energy Exploration & Exploitation, 2015, 33(3): 439-458.
[28] PETERS K E, MOLDOWAN J M.The biomarker guide interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993.
[29] CHEN Z H, SIMONEIT B R, WANG T G, et al.Biomarker signatures of Sinian bitumens in the Moxi-Gaoshiti Bulge of Sichuan Basin, China: Geological significance for paleo-oil reservoirs[J]. Precambrian Research, 2017, 296: 1-19.
[30] 魏国齐, 谢增业, 白贵林, 等. 四川盆地震旦系—下古生界天然气地球化学特征及成因判识[J]. 天然气工业, 2014, 34(3): 44-49.
WEI Guoqi, XIE Zengye, BAI Guilin, et al.Organic geochemical characteristics and origin of natural gas in the Sinian-Lower Paleozoic reservoirs, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 44-49.
[31] 王招明, 肖中尧. 塔里木盆地海相原油的油源问题的综合述评[J]. 科学通报, 2004, 49(S1): 1-8.
WANG Zhaoming, XIAO Zhongyao.A review of the oil-source rocks for marine oil in Tarim Basin[J]. Chinese Science Bulletin, 2004, 49(S1): 1-8.
[32] HUANG H P, ZHANG S C, SU J.Palaeozoic oil source correlation in the Tarim Basin, NW China: A review[J]. Organic Geochemistry, 2016, 94: 32-46.
[33] 王飞宇, 杜治利, 张宝民, 等. 柯坪剖面中上奥陶统萨尔干组黑色页岩地球化学特征[J]. 新疆石油地质, 2008, 29(6): 687-689.
WANG Feiyu, DU Zhili, ZHANG Baomin, et al.Geochemistry of Salgan black shales of Middle-Upper Ordovician in Keping Outcrop, Tarim Basin[J]. Xinjiang Petroleum Geology, 2008, 29(6): 687-689.
[34] 陈旭, 张元动, 李越, 等. 塔里木盆地及周缘奥陶系黑色岩系的生物地层学对比[J]. 中国科学: 地球科学, 2012, 42(8): 1173-1181.
CHEN Xu, ZHANG Yuandong, LI Yue, et al.Biostratigraphic correlation of the Ordovician black shales in Tarim Basin and its peripheral regions[J]. SCIENCE CHINA Earth Sciences, 2012, 55(8): 1230-1237.
[35] 刘文汇. 海相油气成藏定年技术研究[R]. 北京: 第六届中国石油地质年会, 2015.
LIU Wenhui.Study on the dating technology of marine oil and gas accumulation[R]. Beijing: The 6th Annual Meeting of Petroleum Geology of China, 2015.
[36] 陈红汉, 吴悠, 丰勇, 等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014, 35(6): 806-818.
CHEN Honghan, WU You, FENG Yong, et al.Timing and chronology of hydrocarbon charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2014, 35(6): 806-818.
[37] 宋丹丹. 塔里木盆地顺托果勒低隆志留系油气成藏特征研究[D]. 北京: 中国石油大学(北京), 2016: 31-37.
SONG Dandan.Hydrocarbon accumulation characteristics for Silurian Reservoirs in Shuntuoguole Low Uplift, Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2016: 31-37.
[38] 冯兴强, 张忠民, 张卫彪. 塔河油田志留系油气成藏特征及勘探方向[J]. 现代地质, 2013, 27(1): 180-185.
FENG Xingqiang, ZHANG Zhongmin, ZHANG Weibiao.Petroleum accumulation characteristics and favorable exploration target of Silurian in Tahe Oilfield[J]. Geoscience, 2013, 27(1): 180-185.
[39] 葛翔. 海相油气成藏改造的Re-Os年代学研究[D]. 武汉: 中国地质大学(武汉), 2017: 41.
GE Xiang.Rhenium-Osmium geochronology and geochemistry of marine petroleum systems, China[D]. Wuhan: China University of Geosciences (Wuhan), 2017: 41.
[40] 赵靖舟. 油气水界面追溯法与塔里木盆地海相油气成藏期分析[J]. 石油勘探与开发, 2001, 28(4): 53-56.
ZHAO Jingzhou.Timing marine petroleum accumulation in the Tarim Basin by oil/gas-water contact retrospecting[J]. Petroleum Exploration and Development, 2001, 28(4): 53-56.
[41] 赵靖舟, 李启明. 塔里木盆地克拉通区海相油气成藏期与成藏史[J]. 科学通报, 2002, 47(S1): 116-121.
ZHAO Jingzhou, LI Qiming.Accumulation stages and accumulation process of marine hydrocarbon pools in the cratonic areas of Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(S1): 116-121.
[42] 苏劲, 张水昌, 杨海军, 等. 原生油藏调整过程的有机地球化学与岩石学证据: 由乡3井看哈得逊油田的调整机制[J]. 岩石学报, 2010, 27(6): 1886-1898.
SU Jin, ZHANG Shuichang, YANG Haijun, et al.Evidence of the organic geochemistry and petrology for the adjustment process of primary reservoir: Insight into the adjustment mechanism of Hadexun oil field visa Xiang-3 Well[J]. Acta Petrologica Sinica, 2010, 27(6): 1886-1898.
文章导航

/