油气勘探

人工智能在石油勘探开发领域的应用现状与发展趋势

  • 匡立春 ,
  • 刘合 ,
  • 任义丽 ,
  • 罗凯 ,
  • 史洺宇 ,
  • 苏健 ,
  • 李欣
展开
  • 1.中国石油天然气集团有限公司科技管理部,北京100007;
    2.中国石油勘探开发研究院,北京100083
匡立春(1962-),男,山东五莲人,中国石油天然气集团有限公司科技管理部教授级高级工程师,主要从事油气勘探研究和科技管理工作。地址:北京市东城区东直门北大街9号,邮政编码:100007。E-mail: klc@petrochina.com.cn

收稿日期: 2020-09-19

  修回日期: 2020-12-25

  网络出版日期: 2021-01-19

基金资助

国家自然科学基金科学中心项目/基础科学中心项目“数字经济时代的资源环境管理理论与应用”(72088101)

Application and development trend of artificial intelligence in petroleum exploration and development

  • KUANG Lichun ,
  • LIU He ,
  • REN Yili ,
  • LUO Kai ,
  • SHI Mingyu ,
  • SU Jian ,
  • LI Xin
Expand
  • 1. Science and Technology Management Department of CNPC, Beijing 100007, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Received date: 2020-09-19

  Revised date: 2020-12-25

  Online published: 2021-01-19

摘要

针对石油勘探开发的实际需求,阐述了人工智能技术在石油勘探开发领域的研究进展与应用情况,探讨并展望未来人工智能技术在石油勘探开发领域的发展方向与发展重点。机器学习在岩性识别、测井曲线重构、储集层参数预测等测井处理解释方面初步应用,并显现出巨大潜力;计算机视觉技术在初至波拾取、断层识别等地震处理解释方面应用已有成效;油藏工程领域深度学习和最优化技术已开始应用于水驱开发实时调控、产量预测等方面;数据挖掘在钻完井、地面工程等领域的应用初步形成了智能化装备、一体化软件。未来人工智能在石油勘探开发领域潜在的发展方向为智能生产装备、自动处理解释和专业软件平台,发展重点为数字盆地、快速智能成像测井仪器、智能化节点地震采集系统、智能旋转导向钻井、智能化压裂技术装备、分层注采实时监测与控制工程等技术。表1参19

本文引用格式

匡立春 , 刘合 , 任义丽 , 罗凯 , 史洺宇 , 苏健 , 李欣 . 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021 , 48(1) : 1 -11 . DOI: 10.11698/PED.2021.01.01

Abstract

According to the actual demands of petroleum exploration and development, this paper describes the research progress and application of artificial intelligence technology in the field of petroleum exploration and development, and discusses the applications and development directions of artificial intelligence technology in the future. Machine learning technology has preliminary application in lithology identification, logging curve reconstruction, reservoir parameter prediction and other logging processing and interpretation, and has shown great potential. Computer vision is effective in the seismic first breaks picking, fault identification and other seismic processing and interpretation. Deep learning and optimization technology has been applied to reservoir engineering, and realized the real-time optimization of waterflooding development and prediction of oil and gas field production. The application of data mining in drilling and completion, surface engineering and other fields has formed intelligent equipment and integrated software. The potential development directions of artificial intelligence in the field of petroleum exploration and development are intelligent production equipment, automatic processing interpretation and professional software platform. The focus of development is digital basin, fast intelligent imaging logging tool, intelligent node seismic acquisition system, intelligent rotary steering drilling, intelligent fracturing technology and equipment, real-time monitoring and control engineering of separate layer injection and production.

参考文献

[1] MCCARTHY J, MINSKY M L, ROCHESTER N, et al.A proposal for the Dartmouth summer research project on artificial intelligence[J]. AI Magazine, 2006, 27(4): 12-14.
[2] 张东晓, 陈云天, 孟晋. 基于循环神经网络的测井曲线生成方法[J]. 石油勘探与开发, 2018, 45(4): 598-607.
ZHANG Dongxiao, CHEN Yuntian, MENG Jin.Synthetic well logs generation via Recurrent Neural Networks[J]. Petroleum Exploration and Development, 2018, 45(4): 598-607.
[3] 江凯, 王守东, 胡永静, 等. 基于Boosting Tree算法的测井岩性识别模型[J]. 测井技术, 2018, 42(4): 395-400.
JIANG Kai, WANG Shoudong, HU Yongjing, et al.Lithology identification model by well logging based on boosting tree algorithm[J]. Well Logging Technology, 2018, 42(4): 395-400.
[4] REN Yili, GONG Renbin, FENG Zhou, et al.Valuable data extraction for resistivity imaging logging interpretation[J]. Tsinghua Science and Technology, 2020, 25(2): 281-293.
[5] WU X, LIAN L, SHI Y, et al.Deep learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge- preserving, and slope estimation by using a single convolutional neural network[R]. San Antonio: 2019 SEG Annual Meeting, 2019.
[6] ZHANG H, LIU Y, ZHANG Y, et al.Automatic seismic facies interpretation based on an enhanced encoder-decoder structure[R]. San Antonio: 2019 SEG Annual Meeting, 2019.
[7] PHAN S, SEN M.Deep learning with cross-shape deep Boltzmann machine for pre-stack inversion problem[R]. San Antonio: 2019 SEG Annual Meeting, 2019.
[8] MA Y, CAO S, RECTOR J W, et al.Automatic first arrival picking for borehole seismic data using a pixel-level network[R]. San Antonio: 2019 SEG Annual Meeting, 2019.
[9] 贾德利, 刘合, 张吉群, 等. 大数据驱动下的老油田精细注水优化方法[J]. 石油勘探与开发, 2020, 47(3): 629-636.
JIA Deli, LIU He, ZHANG Jiqun, et al.Data-driven optimization for fine water injection in a mature oil field[J]. Petroleum Exploration and Development, 2020, 47(3): 629-636.
[10] 贾虎, 邓力珲. 基于流线聚类人工智能方法的水驱油藏流场识别[J]. 石油勘探与开发, 2018, 45(2): 312-319.
JIA Hu, DENG Lihui.Oil reservoir water flooding flowing area identification based on the method of streamline clustering artificial intelligence[J]. Petroleum Exploration and Development, 2018, 45(2): 312-319.
[11] 王洪亮, 穆龙新, 时付更, 等. 基于循环神经网络的油田特高含水期产量预测方法[J]. 石油勘探与开发, 2020, 47(5): 1009-1015.
WANG Hongliang, MU Longxin, SHI Fugeng, et al.Production prediction at ultra-high water cut stage via Recurrent Neural Network[J]. Petroleum Exploration and Development, 2020, 47(5): 1009-1015.
[12] KUBOTA L K, REINERT D.Machine learning forecasts oil rate in mature onshore field jointly driven by water and steam injection[R]. SPE 196152-MS, 2019.
[13] BAO Anqi, GILDIN E, HUANG Jianhua, et al.Data-driven end-to-end production prediction of oil reservoirs by EnKF-enhanced Recurrent Neural Networks[R]. SPE 199005-MS, 2020.
[14] TARIQ Z, ABDULRAHEEM A.An artificial intelligence approach to predict the water saturation in carbonate reservoir rocks[R]. SPE 195804-MS, 2019.
[15] SHAHKARAMI A, MOHAGHEGH S.智能代理在油藏建模中的应用[J]. 石油勘探与开发, 2020, 47(2): 372-382.
SHAHKARAMI A,MOHAGHEGH S.Applications of smart proxies for subsurface modeling[J]. Petroleum Exploration and Development, 2020, 47(2): 372-382.
[16] ARTUN E, KULGA B.基于模糊推理的致密砂岩气储集层重复压裂井选择方法[J]. 石油勘探与开发, 2020, 47(2): 383-389.
ARTUN E, KULGA B.Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development, 2020, 47(2): 383-389.
[17] SENGEL A, TURKARSLAN G.Assisted history matching of a highly heterogeneous carbonate reservoir using hydraulic flow units and artificial neural networks[R]. SPE 200541-MS, 2020.
[18] ZHANG Jian.Development of automated neuro-simulation protocols for pressure and rate transient analysis applications[D]. University Park, PA, USA: The Pennsylvania State University, 2017.
[19] COSTA L A N, MASCHIO C, SCHIOZER D J. Application of artificial neural networks in a history matching process[J]. Journal of Petroleum Science and Engineering, 2014, 123: 30-45.
文章导航

/