采用数值模拟与刻度井群测井相结合的方法进行套管井声场研究,分析套管井窜槽角度、Ⅱ界面(水泥与地层胶结界面)胶结质量对声波-变密度测井的影响,在此基础上对利用CBL/VDL测井资料评价固井质量的方法进行改进,提出新的评价标准。分别采用实轴积分法和2.5维有限差分算法对轴对称声场与非轴对称声场进行数值模拟,并与刻度井测井数据对比后发现:数值模拟方法可靠;随着窜槽角度减小,套管首波幅度减小,且水泥浆密度越大,套管波衰减越快;声波测井能辨别的最小窜槽角度为45°;通过波形图在时域内很难提取地层波信息,可利用主频识别地层波,且在灰岩地层中当Ⅱ界面环隙宽度较小时地层波才可作为首波接收。依据套管井声场研究结果,建立了新的基于声波-变密度测井的固井质量评价标准。图8表3参20
A new method of cement bond quality evaluation was proposed by combining numerical simulation and calibrated cased hole acoustic logging data. The effects of the cement channel angle and the quality of the second bond interface (the interface of cement with formation) on acoustic variable density logging data were analyzed. Based on the analysis result, a new cement bond evaluation standard was presented after revising the traditional CBL/VDL method. The axisymmetric acoustic field was simulated by real axis integral method, while the non-axisymmetric acoustic field was simulated by 2.5-D finite differential method. After comparing with the calibrated cased hole acoustic logging data, the research has the below results: the numerical simulation result matches with the calibrated well logging data very well and the new method is reliable; the amplitude of the first acoustic arrival in the case hole decreases as the angle of cement channel decreases, and the denser the cement is, the faster the amplitude of cased hole acoustic waveform decays; the lower limit of cement channel angle is around 45 degrees which can be detected by acoustic logging; the formation acoustic waveform is not easy to be detected in time domain, however it is easy to be detected in frequency domain, especially in limestone formation, the first arrival only can be detected when the annulus width of the second bond interface is small. According to the research result of the numerical simulation of cased hole acoustic field and acoustic variable density logging data, new evaluation criteria of cement bound quality were presented.
[1] 章成广, 江万哲, 潘和平. 声波测井原理及应用[M]. 北京: 石油工业出版社, 2009.
ZHANG Chengguang, JIANG Wanzhe, PAN Heping. Acoustic logging and application[M]. Beijing: Petroleum Industry Press, 2009.
[2] 李涛. 高温高压套损井膨胀管修复技术[J]. 石油勘探与开发, 2015, 42(3): 374-378.
LI Tao. Solid expandable tubular patching technique for high-temperature and high-pressure casing damaged wells[J]. Petroleum Exploration and Development, 2015, 42(3): 374-378.
[3] BIOT M A. Propagation of elastic waves in a cylindrical bore containing a fluid[J]. Journal of Applied Physics, 1952, 23(9): 997-1005.
[4] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid(II): Higher frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
[5] WHITE J E, ZECHMAN R E. Computed response of an acoustic logging to0l[J]. Geophysics, 1968, 33(2): 302-310.
[6] CHENG C H, TOKSOZ M N. Elastic wave propagation in a fluid filled borehole and synthetic acoustic logs[J]. Geophysics, 1981, 46(7): 1042-1053.
[7] ZHANG Hailan, LI Mingxuan, HAILAN Z. Numerical study of acoustic field of borehole in slow formation[J]. CJ Geophysics, 1993, 36(1): 137-144.
[8] 胡文祥, 钱梦騄. 套管井声场合成波形及其时频特征分析[J]. 声学学报, 2002, 27(3): 223-228.
HU Wenxiang, QIAN Menglu. Synthetic waveforms of the acoustic field in cased boreholes and their time-frequency distribution[J]. ACTA Acoustic, 2002, 27(3): 223-228.
[9] 林伟军, 张澄宇, 张海澜, 等. 带扇形窜槽的套管井声场[J]. 声学学报, 2005, 30(1): 9-14.
LIN Weijun, ZHANG Chengyu, ZHANG Hailan, et al. Acoustic field in a cased well with a sectorial crossing channel[J]. ACTA Acoustic, 2005, 30(1): 9-14.
[10] SONG R L, LIU J X, YAO G J. Parallel finite difference modeling of acoustic fields in nonaxisymmetric cased hole[J]. Chinese Journal of Geophysics, 2010, 53(6): 2767-2775.
[11] SONG R L, LIU J X, HOU C H. Numerical simulation of sector bond log and improved cement bond image[J]. Geophysics, 2012, 77(4): 95-104.
[12] 陈德华, 王秀明, 张海澜, 等. 水泥密度和套管尺寸对油井套管波的影响[J]. 声学学报, 2008, 33(1): 15-20.
CHEN Dehua, WANG Xiuming, ZHANG Hailan, et al. The effects of cement density and casing dimension on casing waves in oil wells[J]. ACTA Acoustic, 2008, 33(1): 15-20.
[13] SHI Fangfang, WU Xianmei, ZHANG Bixing. Application of cylindrical linear phased array in casing borehole[J]. Chinese Journal of Acoustics, 2010, 29(1): 65-72.
[14] 韩炜, 毛捷, 金士杰. 套管-水泥界面微间厚度的低频超声反演方法[J].声学学报, 2014, 39(4): 467-472.
HAN Wei, MAO Jie, JIN Shijie. A thickness determination method of thin layer between casing and cement using low frequency ultrasound[J]. ACTA Acoustic, 2014, 39(4): 467-472.
[15] 刁顺, 乔文孝, 杜光升. 声波测井对微环探测能力的研究[J]. 石油地球物理勘探, 2003, 38(5): 540-542.
DIAO Shun, QIAO Wenxiao, DU Guangsheng. Influence of microannulus thickness on capacity of acoustic wave-long tool[J]. Oil Geophysical Prospecting, 2003, 38(5): 540-542.
[16] 徐琰锋, 胡文祥. 纵向带状裂隙形貌的逆时偏移超声成像[J]. 物理学报, 2014, 63(15): 154302.
XU Yanfeng, HU Wenxiang. Ultrasonic imaging for appearance of vertical slot by reverse time migration[J]. Acta Physica Sinica, 2014, 63(15): 154302.
[17] 初纬, 沈吉云, 杨云飞, 等. 连续变化内压下套管-水泥环-围岩组合体微环隙计算[J]. 石油勘探与开发, 2015, 42(3): 379-385.
CHU Wei, SHEN Jiyun, YANG Yunfei, et al. Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change[J]. Petroleum Exploration and Development, 2015, 42(3): 379-385.
[18] 刘继生, 王克协. 用频率-波数分析研究声波测井全波列的各相波[J].测井技术, 2000, 24(3): 198-202.
LIU Jisheng, WANG Kexie. Studying each mode of ascoutic full-wavetrains using frequency wavenumber analysis[J]. Well Logging Technology, 2000, 24(3): 198-202.
[19] 中华人民共和国国家发展和改革委员会. 固井质量评价方法: SY/T 6592-2004[S]. 北京: 石油工业出版社, 2004.
National Development and Reform Commission. Procedure for cement evaluation: SY/T 6592-2004 [S]. Beijing: Petroleum Industry Press, 2004.
[20] 唐军, 章成广. MAK-Ⅱ声波测井资料在定量评价固井质量中的应用[J]. 测井技术, 2011, 35(3): 266-269.
TANG Jun, ZHANG Chengguang. Application study on cement bond quantitative evaluation by MAK-Ⅱwaveform data[J]. Well Logging Technology, 2011, 35(3): 266-269.