岩石的脆性和可压裂性是非常规油气储集层体积压裂重要的岩石力学参数,为获得地层岩石的脆性和可压裂性指标,基于声波测井得到的井壁地层纵、横波速度的径向变化,求得地层的脆裂指数,指导储集层压裂改造作业。钻井过程中岩石破坏时在井壁地层中产生微裂缝,导致弹性波速度降低,波速在径向上发生由小到大的变化。采用测井纵波速度的层析成像和偶极弯曲波频散特征反演获得井壁周围地层纵、横波速度径向剖面,将两个剖面沿井径方向积分,得到纵、横波脆裂指数。脆裂指数与脆性指数、可压裂指数相关性较好,验证了用脆裂指数评估岩石脆裂性质的有效性;实际对测井数据的处理和分析亦证明了这种方法的可行性和有效性,结果对于储集层压裂优选层位和压裂改造实施有指导意义。图7表1参17
唐晓明
,
许松
,
庄春喜
,
苏远大
,
陈雪莲
. 基于弹性波速径向变化的岩石脆裂性定量评价[J]. 石油勘探与开发, 2016
, 43(3)
: 417
-424
.
DOI: 10.11698/PED.2016.03.12
Brittleness and fracability are two important rock properties in hydraulic fracturing of unconventional reservoirs. Based on the variation of compressional and shear velocity around borehole using acoustic measurement, an effective technique is developed to estimate these parameters to guide reservoir-fracturing. During drilling, when the rock is broken, a significant amount of drilling induced cracks will occur in the formation around the borehole, resulting in the drop of radial elastic wave velocity and the wave velocity variation from low to high in radial direction. The radial variation of compressional and shear velocities of formation rocks surrounding a borehole were respectively obtained from P-wave travel time tomography and dipole shear-wave dispersion inversion. By integrating the two variation profiles along the radial direction, the brittleness-fracability index is obtained to estimate the brittleness and fracability of formation rocks. The index shows fairly good consistency and correlation with rock brittleness and fracability, which demonstrates the practicability and effectiveness of the proposed approach. Well log data analysis examples are presented to demonstrate the effectiveness of our technique.
[1] PEREZ A R, MARFURT K. Mineralogy-based brittleness prediction from surface seismic data: Application to the Barnett Shale[J]. Interpretation, 2014, 2(4): T255-T271.
[2] 刘绪纲, 孙建孟, 郭云峰. 元素俘获谱测井在储层综合评价中的应用[J]. 测井技术, 2005, 29(3): 236-239.
LIU Xugang, SUN Jianmeng, GUO Yunfeng. Application of elemental capture spectroscopy to reservoir evaluation[J]. Well Logging Technology, 2005, 29(3): 236-239.
[3] WU H L, LI N, LAN C L, et al. Standard spectrum measurement and simulation of elemental capture spectroscopy log[J]. Applied Geophysics, 2013, 10(1): 109-116.
[4] RICKMAN R, MULLEN M, PETER E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[R]. SPE 115258-MS, 2008.
[5] 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527.
YUAN Junliang, DENG Jin’gen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527.
[6] 孙建孟, 韩志磊, 秦瑞宝, 等. 致密气储集层可压裂性测井评价方法[J]. 石油学报, 2015, 36(1): 74-80.
SUN Jianmeng, HAN Zhilei, QIN Ruibao, et al. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(1): 74-80.
[7] 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科技大学出版社, 2004.
CHEN Yong, HUANG Tingfang, LIU Enru. Rock physics[M]. Hefei: China University of Science and Technology Press, 2004.
[8] WINKLER K W. Borehole damage indicator from stress-induced velocity variations[J]. Geophysics, 2005, 70(10): F11-F16.
[9] HORNBY B E. Tomographic reconstruction of near-borehole slowness using refracted borehole sonic arrivals[J]. Geophysics, 1993, 58(12): 1726-1738.
[10] THOMSEN L. Biot-consistent elastic moduli of porous rocks: Low-frequency limit[J]. Geophysics, 1985, 50(12): 2797-2807.
[11] TANG Xiaoming, CHEN Xuelian, XU Xiaokai. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations[J]. Geophysics, 2012, 77(6): D245-D252.
[12] TANG X M, PATTERSON D J. Mapping formation radial shear-wave velocity variation by a constrained inversion of borehole flexural-wave dispersion data[J]. Geophysics, 2010, 75(6): E183-E190.
[13] SU Y D, TANG X M, ZHUANG C X, et al. Mapping formation shear-velocity variation by inverting logging-while-drilling quadrupole-wave dispersion data[J]. Geophysics, 2013, 78(6): D491-D498.
[14] 徐果明, 周蕙兰. 地震学原理[M]. 北京: 科学出版社, 1982.
XU Guoming, ZHOU Huilan. Principle of seismology[M]. Beijing: Science Press, 1982.
[15] 唐晓明, 郑传汉. 定量测井声学[M]. 北京: 石油工业出版社, 2004.
TANG Xiaoming, ZHENG Chuanhan. Quantitative acoustic well logging[M]. Beijing: Petroleum Industry Press, 2004.
[16] 赵龙, 唐晓明, 苏远大, 等. 横波速度径向层析成像方法及应用研究[J]. 应用声学, 2014, 33(1): 9-15.
ZHAO Long, TANG Xiaoming, SU Yuanda, et al. Research on radial shear-wave velocity tomography[J]. Journal of Applied Acoustics, 2014, 33(1): 9-15.
[17] 唐晓明. 含孔隙、裂隙介质弹性波动的统一理论-Biot理论的推广[J]. 中国科学: 地球科学, 2011, 41(6): 784-795.
TANG Xiaoming. A unified theory for elastic wave propagation through porous media containing cracks: An extension of Biot’s poroelastic wave theory[J]. SCIENCE CHINA Earth Sciences, 2011, 54(9): 1441-1452.