以取自尼日利亚上贝努埃地槽Gongola盆地Kolmani-1井的样品为基础,对其放射性热产量进行了估算,并对放射性热产量对沉积物生油气潜力的影响进行了分析。研究采用精确标定的碘化钠伽马射线检测系统,对不同层组的38块样品(取样间隔73.2 m,包括砂岩、页岩、含煤页岩、砂质页岩、泥质砂岩)进行了40K、238U及232Th的放射性分析。研究结果表明,沉积物中放射性元素的放射性浓度存在显著变化,40K浓度最高;沉积物放射性热产量为228.44~1 412.82 pW/kg;Kolmani-1井砂岩和砂质页岩属于低热产量沉积物,含煤页岩、页岩及泥质砂岩属于中热产量沉积物,潜在烃源岩(页岩和含煤页岩层段)的放射性热产量值主要位于中热产量范围(750~1500 pW/kg),同时具有生成液态烃和气态烃的能力。此外,沉积物的放射性热量约占盆地总地表热通量的10.9%~20.9%,沉积物的放射性热量是总地表热通量的重要组成部分,应将其纳入盆地的热模拟。图3表3参21
OYEBANJO O M
,
AJAYI T R
,
TCHOKOSSA P
. 尼日利亚Gongola盆地地层放射性热产量与生烃潜力[J]. 石油勘探与开发, 2016
, 43(3)
: 411
-416
.
DOI: 10.11698/PED.2016.03.11
Samples taken from Well Kolmani-1 in the Gongola Basin in the Upper Benue Trough of Nigeria were studied to estimate the radiogenic heat generated and to analyze the possible impact of radiogenic heat on hydrocarbon generation potential of the sediments. Thirty-eight samples taken from the different formations at intervals of 73.2 m including sand, shale, coaly shale, sandy shale, and shaly sand were analyzed for 40K, 238U, and 232Th using the well calibrated NaI (Tl) Gamma Ray detector System. The results showed that the activity concentrations of the radio-nuclides varied significantly within the sediments. The 40K concentrations were the highest. The radiogenic heat produced ranges widely from 228.44 pW/kg to 1 412.82 pW/kg. In Well Kolmani-1, sands and sandy shale are low heat production sediments, while the shale, coaly shale and silty sands are medium heat production sediments, the potential source rock (shale and coaly shale) medium in heat production (750 pW/kg to 1 500 pW/kg), can produce liquid and gaseous hydrocarbons. It is estimated that the radiogenic heat from the sediments contributed about 10.9% to 20.9% to the total surface heat flux in the basin. Therefore, the radiogenic heat generated by the sediments contributed significantly to the total surface heat flux, and should be taken into consideration in the simulation of basin thermal evolution.
[1] WANG S, HU S, LI T, et al. Terrestrial heat flow in Junggar Basin, Northwest China[J]. Chinese Science Bulletin, 2000, 45(19): 1808-1813.
[2] CONNAN J. Time-temperature relation in oil genesis[J]. AAPG Bulletin, 1974, 58(12): 2516-2521.
[3] CHAPMAN D S, POLLACK H N. Cold spot in West Africa: Anchoring the African plate[J]. Nature, 1974, 250: 477-478.
[4] KEEN C E, LEWIS T. Measured radiogenic heat production in sediments from the continental margin of eastern North America: Implications for Petroleum Generation[J]. AAPG Bulletin, 1982, 66: 1402-1407.
[5] MCKENNA T E, SHARP J M. Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin[J]. AAPG Bulletin, 1998, 82(3): 484-496.
[6] BEARDSMORE G R, CULL J P. Crustal heat flow: A guide to measurement and modelling[M]. London: Cambridge University Press, 2001.
[7] HERMANRUD C. Basin modeling techniques: An overview[C]// DORE A G, AUGUSTON J H, HERMANRUD C, et al. Basin modeling: Advances and applications. Oslo: Norwegian Petroleum Society Special Publication, 1993: 1-34.
[8] EHINOLA O A, JOSHUA E O, OPELOYE S A, et al. Radiogenic heat production in the Cretaceous sediments of Yola Arm of Nigeria Benue Trough: Implications for thermal history and hydrocarbon generation[J]. Journal of Applied Sciences, 2005, 5(4): 696-701.
[9] ALI S, ORAZULIKE D M. Well logs-derived radiogenic heat production in the sediments of the Chad Basin, NE Nigeria[J]. Journal of Applied Sciences, 2010, 10(10): 786-800.
[10] KING L. Speculations upon the outline and the mode of disruption of Gondwanaland[J]. Geological Magazine, 1950, 87(5): 353-359.
[11] OBAJE N G, WEHNER H L, ABUBAKAR M B, et al. Nasara-I well, Gongola basin (Upper Benue Trough, Nigeria): Source-rock evaluation[J]. Journal of Petroleum Geology, 2004, 27(2): 191-206.
[12] BENKHELIL J. Benue trough and Benue chain[J]. Geological Magazine, 1982, 119(2): 155-168.
[13] BENKHELIL J. The origin and evolution of the Cretaceous Benue Trough(Nigeria)[J]. Journal of African Earth Science, 1989, 8: 251-282.
[14] CARTER J, BARBAR W, TAIT E A, et al. The geology of parts of Adamawa, Bauchi and Borno Provinces in northeastern Nigeria[J]. Geological Survey of Nigeria Bulletin, 1963, 30: 1-108.
[15] THOMPSON J H. The geology and hydrology of Gombe, Bauchi Province[J]. Record of the Geology Survey, Nigeria, 1958, 10: 46-65.
[16] OYEBANJO O M, AJAYI T R, TCHOKOSSA P. Geochemistry of Kolmani-1 well sediments from the upper Benue Trough, Gongola Basin, Northeastern Nigeria[J]. British Journal of Applied Science & Technology, 2014, 4(20): 2931-2945.
[17] RYBACH L. The radioactivity of rocks and their influence on temperature field in the continental crust[J]. Zeitscrift fur Geophysics, 1976, 42(2): 93-101.
[18] CHUKWUMAH B E, AKINLUA A, AJAYI T R. Trace element characterization of Kolmani-1 well Kerogen, Upper Benue Trough, Northeastern Nigeria[D]. Ogbomoso: Ladoke Akintola University of Technology, 2012.
[19] VERHEIJEN P J T, AJAKAIYE D E. Heat flow measurements in the Ririwai ring complex, Nigeria[J]. Tectonophysics, 1979, 54: 27-32.
[20] HERRIN E T, CLARK S P. Heat flow in West Texas and eastern New Mexico[J]. Geophysics, 1956, 21(4): 1087-1098.
[21] HOOD A, GUTJAHR C C M, HEACOCK R L. Organic metamorphism and the generation of petroleum[J]. AAPG Bulletin, 1975, 59(6): 986-996.