油气勘探

渝东北地区巫溪2井页岩气富集模式及勘探意义

  • 梁峰 ,
  • 拜文华 ,
  • 邹才能 ,
  • 王红岩 ,
  • 武瑾 ,
  • 马超 ,
  • 张琴 ,
  • 郭伟 ,
  • 孙莎莎 ,
  • 朱炎铭 ,
  • 崔会英 ,
  • 刘德勋
展开
  • 1. 中国矿业大学;
    2. 中国石油勘探开发研究院廊坊分院;
    3. 国家能源页岩气研发(实验)中心;
    4. 中国石油非常规油气重点实验室;
    5. 中国石油勘探开发研究院
梁峰(1982-),男,河北唐山人,博士,中国石油勘探开发研究院廊坊分院工程师,主要从事页岩气等非常规油气地质勘探和基础理论研究工作。地址:河北省廊坊市万庄44号信箱,中国石油勘探开发研究院廊坊分院,邮政编码:065007。E-mail:Liangfeng05@petrochina.com.cn

网络出版日期: 2017-01-01

基金资助

国家重点基础研究发展计划(973)项目(2013CB228000); 国家科技重大专项(2011ZX05018)

Shale gas enrichment pattern and exploration significance of Well Wuxi-2 in northeast Chongqing, NE Sichuan Basin

  • LIANG Feng ,
  • BAI Wenhua ,
  • ZOU Caineng ,
  • WANG Hongyan ,
  • WU Jin ,
  • MA Chao ,
  • ZHANG Qin ,
  • GUO Wei ,
  • SUN Shasha ,
  • ZHU Yanming ,
  • CUI Huiying ,
  • LIU Dexun
Expand
  • 1. China University of Mining and Technology, Xuzhou 221116, China;
    2. Langfang Branch of PetroChina Research Institute of Petroleum Exploration & Development, Langfang 065007, China;
    3. National Energy Shale Gas R&D (Experiment) Center, Langfang 065007, China;
    4. CNPC Unconventional Oil and Gas Laboratory, Langfang 065007, China;
    5. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083,China

Online published: 2017-01-01

摘要

以钻井资料为基础,依据笔石生物地层、地球化学特征、岩石矿物组成、储集层微观特征、构造条件等数据,研究渝东北地区巫溪2井页岩气富集模式。巫溪2井上奥陶统五峰组—下志留统龙马溪组富有机质页岩厚达89.8 m,笔石带发育齐全,富有机质页岩段从奥陶系凯迪阶上部上延到下志留统特列奇阶下部,沉积厚度及时间远超四川盆地其他区域。页岩最高实测含气量超8 m3/t,含气性主要受TOC大小控制,有机质纳米孔为主要储集空间,无机矿物对储集空间的贡献较小;其中孔径大于50 nm的有机质孔隙较常见,小于10 nm的有机质孔为吸附气的主要赋存场所。巫溪2井目的层段处于挤压型背斜(田坝背斜)核部中性面以下,在脆性较强层段形成了2个垂向裂缝(劈理)发育带,利于页岩气的储集及后期压裂改造形成复杂缝网;田坝背斜两翼断层属挤压性断层,断层两侧为非渗透性的页岩,且预测断层面有泥岩涂抹现象,具有良好的封堵性,有利于页岩气的保存。上述诸多有利条件的良好匹配最终形成了研究区“构造型甜点”。图8参27

本文引用格式

梁峰 , 拜文华 , 邹才能 , 王红岩 , 武瑾 , 马超 , 张琴 , 郭伟 , 孙莎莎 , 朱炎铭 , 崔会英 , 刘德勋 . 渝东北地区巫溪2井页岩气富集模式及勘探意义[J]. 石油勘探与开发, 2016 , 43(3) : 350 -358 . DOI: 10.11698/PED.2016.03.04

Abstract

The shale gas enrichment pattern of Well Wuxi-2 in northeast Chongqing was studied, based on the data of the drilling, graptolite biostratigraphy, geochemistry, rock minerals, microscopic characteristics of reservoir beds and tectonic conditions, etc. The organic-rich shale of Upper Ordovician Wufeng Formation—Lower Silurian Longmaxi Formation is 89.8 m thick in Well WX-2. The graptolite biozonations are completely developed in this well, and the organic-rich shale intervals extend upward from the late Katian of the Ordovician to the early Telychian of the Lower Silurian. The deposition time of the organic-rich shale is far longer and the thickness is larger than those in other areas of the Sichuan Basin. The highest measured gas content exceeded 8 m3/t in Well WX-2, and the gas content is mainly controlled by TOC. The organic nano-pores are the main storage space, and the minerals contribute less to the storage space. The organic pores larger than 50 nm are well-developed and those less than 10 nm are the main reservoir space of adsorbed gas. The target intervals of Well WX-2 are located under the neutral surface of compressional Tianba anticline. Two vertical fracture (cleavage) development zones, which are beneficial for shale gas storage and complex fracture network formation during later fracturing, were formed in brittle layers of this organic-rich shale. Compressional faults existed in two limbs of the Tianba anticline, with non-permeable shale developing on both sides of fault planes and development of clay smear, which shows that the faults have good sealing properties, and are favorable for shale gas preservation. Thus the good match between the above various accumulation conditions forms the “tectonic sweet-spot” of shale gas in this study area.

参考文献

[1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
[2] 王志刚. 涪陵礁石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质, 2014, 35(3): 425-430.
WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area[J]. Oil & Gas Geology, 2014, 35(3): 425-430.
[3] 王适择. 川南长宁地区构造特征及志留系龙马溪组裂缝特征研究[D]. 成都: 成都理工大学, 2014.
WANG Shize. The tectonic characteristics of Changning area, south of Sichuan and crack characteristics of Longmaxi Formation of Silurian system[D]. Chengdu: Chengdu University of Technology, 2014.
[4] 周道容. 四川盆地威远地区下古生界页岩气成藏条件及有利区优选[D]. 成都: 成都理工大学, 2013.
ZHOU Daorong. Shale gas reservoiring conditions and favorable area preferred in lower Paleozoic in Sichuan Weiyuan area[D]. Chengdu: Chengdu University of Technology, 2013.
[5] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
[6] 乐光禹. 大巴山造山带及其前陆盆地的构造特征和构造演化[J]. 矿物岩石, 1998, 18(增刊): 8-15.
YUE Guangyu. Tectonic characteristics and tectonic evolution of Dabashan orogenic belt and its foreland basin[J]. Journal of Mineralogy and Petrology, 1998, 18(Supp.): 8-15.
[7] 刘树根, 李智武, 刘顺, 等. 大巴山前陆盆地—冲断带的形成演化[M]. 北京: 地质出版社, 2006.
LIU Shugen, LI Zhiwu, LIU Shun, et al. Formation and evolution of Dabashan foreland basin and fold-and-thrust belt, Sichuan, China[M]. Beijing: Geological Publishing House, 2006.
[8] 龙鹏宇, 张金川, 李玉喜, 等. 重庆及其周缘地区下古生界页岩气成藏条件及有利区预测[J]. 地学前缘, 2012, 19(2): 221-233.
LONG Pengyu, ZHANG Jinchuan, LI Yuxi, et al. Reservoir-forming conditions and strategic select favorable area of shale gas in the lower Paleozoic of Chongqing and its adjacent areas[J]. Earth Science Frontiers, 2012, 19(2): 221-233.
[9] 张志平, 程礼军, 曾春林, 等. 渝东北志留系下统龙马溪组页岩气成藏地质条件研究[J]. 特种油气藏, 2012, 19(4): 25-29.
ZHANG Zhiping, CHENG Lijun, ZENG Chunlin, et al. Geological study on shale gas reservoirs in the Longmaxi formation of lower Silurian in northeast Chongqing[J]. Special Oil and Gas Reservoirs, 2012, 19(4): 25-29.
[10] 熊小辉, 王剑, 余谦, 等. 富有机质黑色页岩形成环境及背景的元素地球化学反演: 以渝东北地区田坝剖面五峰组—龙马溪组页岩为例[J]. 天然气工业, 2015, 35(4): 25-32.
XIONG Xiaohui, WANG Jian, YU Qian, et al. Element geochemistry inversion of the environment and background of organic-rich black shale formations: A case study of the Wufeng-Longmaxi black shale in the Tianba section in northeastern Chongqing[J]. Natural Gas Industry, 2015, 35(4): 35-32.
[11] 胡召齐. 上扬子地区北部构造演化与热年代学研究[D]. 合肥: 合肥工业大学, 2011.
HU Shaoqi. Studies of tectonic evolution and thermochronology in the northern upper Yangtze region[D]. Hefei: Hefei University of Technology, 2011.
[12] CUITIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[13] 中华人民共和国国家能源局. 页岩气含气量测定方法: SY/T 6940-2013 [S]. 北京: 中国标准出版社, 2013.
National Energy Administration of the People’s Republic of China. Measurement method of shale gas content: SY/T 6940-2013 [S]. Beijing: Standards Press of China, 2013.
[14] WANG F P, REED R M, JOHN A. Pore networks and fluid flow in gas shales[R]. Tulsa: SPE Annual Technical Conference and Exhibition, 2009.
[15] REED R M, LOUCKS R G, JARVIE D M, et al. Nanopores in the Mississippian Barnett shale: Distribution morphology, and possible genesis[J]. Geological Society of America Abstracts with Programs, 2007, 39(6): 358.
[16] BOWKER K A. Barnett shale gas production, Fort Worth basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
[17] BUSTIN R M, BUSTIN A M M. Impact of shale properties on pore structure and storage characteristics[R]. SPE 119892, 2008.
[18] 郭彤楼, 刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示: 以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643-651.
GUO Tonglou, LIU Ruobing. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24(4): 643-651.
[19] 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素: 以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3): 893-901.
GUO Xusheng, HU Dongfeng, WEN Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901.
[20] 王玉满, 董大忠, 李新景, 等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 2015, 35(3): 12-21.
WANG Yuman, DONG Dazhong, LI Xinjing, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3): 13-21.
[21] 张译戈. 长宁地区页岩气测井精细解释方法研究[D]. 成都: 西南石油大学, 2014.
ZHANG Yige. The studies on fine logging interpretation method of shale gas in Changning region[D]. Chengdu: Southwest Petroleum University, 2014.
[22] 段文哲. 四川长宁晚奥陶世—早志留世笔石生物地层及同位素地层研究[D]. 北京: 中国地质大学, 2011.
DUAN Wenzhe. Graptolite biostratigraphy and carbon isotope stratigraphy of the upper Ordovician-Lower Silurian in Changning, Sichuan, China[D]. Beijing: China University of Geosciences, 2011.
[23] 陈旭,樊隽轩,张元动,等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 351-358.
CHEN Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform [J]. Journal of Stratigraphy, 2015, 39(4): 351-358.
[24] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
[25] JARVIE D. Evaluation of hydrocarbon generation and storage in Barnett shale, Fort worth Basin, Texas[R]. Austin, Texas: The University of Texas at Austin, 2004.
[26] RAMSAY G J, HUBER M I. Modern structural geology: Folding and fracturing of rocks[M]. Caldwell, New Jersey: The Blackburn Press, 2004.
[27] 王珂, 戴俊生. 地应力与断层封闭性之间的定量关系[J]. 石油学报, 2012, 33(1): 74-81.
WANG Ke, DAI Junsheng. A quantitative relationship between the crustal stress and fault sealing ability[J]. Acta Petrolei Sinica, 2012, 33(1): 74-81.
文章导航

/