油气田开发

页岩气不稳定渗流压力传播规律和数学模型

  • 朱维耀 ,
  • 亓倩 ,
  • 马千 ,
  • 邓佳 ,
  • 岳明 ,
  • 刘玉章
展开
  • 1. 北京科技大学土木与环境工程学院;
    2. 中国石油勘探开发研究院
朱维耀(1960-),男,辽宁沈阳人,博士,北京科技大学教授,现从事渗流力学、非常规油气田开发方面的研究工作。地址:北京市海淀区学院路30号,北京科技大学土木与环境工程学院,邮政编码:100083。E-mail:weiyaook@sina.corn

网络出版日期: 2017-01-01

基金资助

国家重点基础研究(973)发展计划(2013CB228002)

Unstable seepage modeling and pressure propagation of shale gas reservoirs

  • ZHU Weiyao ,
  • QI Qian ,
  • MA Qian ,
  • DENG Jia ,
  • YUE Ming ,
  • LIU Yuzhang
Expand
  • 1. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Online published: 2017-01-01

摘要

利用稳定状态依次替换法,研究了页岩基质储集层内压力扰动的传播规律,得到动边界随时间变化的关系,考虑解吸、扩散、滑移作用及动边界的影响,建立了页岩气不稳定渗流数学模型。采用拉普拉斯变换,求解了内边界定产、外边界为动边界条件下的不稳定渗流压力特征方程。结合中国南方某海相页岩气藏储集层参数,应用MATLAB编程,计算分析了页岩气不稳定渗流压力特征及其影响因素。研究表明:页岩气开采过程中,压力传播具有动边界效应,动边界随时间延续向外传播,且传播速度逐渐减慢;动边界使压力传播速度变慢,储集层压力下降减缓;页岩气解吸使压力传播速度减慢,地层压力下降减缓;扩散系数越大,地层压力下降越慢,且扩散系数影响逐渐减小。在气藏开采过程中,扩散、滑移对产气量贡献逐渐增加,占主要地位;渗流及解吸对产气量贡献逐渐减小后趋于平稳。图9参18

本文引用格式

朱维耀 , 亓倩 , 马千 , 邓佳 , 岳明 , 刘玉章 . 页岩气不稳定渗流压力传播规律和数学模型[J]. 石油勘探与开发, 2016 , 43(2) : 261 -267 . DOI: 10.11698/PED.2016.02.12

Abstract

Pressure disturbance propagation was investigated using the steady state replacement method, the relationship between moving boundary and time was obtained. An unstable seepage model in shale gas reservoirs was established considering the effects of desorption, diffusion, slip and moving boundary. Using Laplace transform, the pressure characteristics equation was solved for the condition of internal boundary being constant production and outer boundary being the moving boundary. Subsequently, combining the parameters of shale gas in southern China, unstable seepage pressure characteristics and its influence factors of shale gas reservoir were analyzed using MATLAB software. The results indicate that the pressure propagation is characterized by moving boundary effect during shale gas exploitation, which means that moving boundary is propagated outwards with the propagation velocity decreasing gradually. Under the effect of moving boundary or shale gas desorption, the pressure propagation velocity decreases and the reservoir pressure drop slows down. With the increasing of the diffusion coefficient, the reservoir pressure drop slows down and the effect of diffusion coefficient decreases gradually. In the process of gas reservoir exploitation, diffusion and slip contribute more and more to gas production, acting as the dominant factors, while the contribution of flow and desorption level off after decreasing.

参考文献

[1] 宁正福, 王波, 杨峰, 等. 页岩储集层微观渗流的微尺度效应[J]. 石油勘探与开发, 2014, 41(4): 445-452.
NING Zhengfu, WANG Bo, YANG Feng, et al. Microscale effect of microvadose in shale reservoirs[J]. Petroleum Exploration and Development, 2014, 41(4): 445-452.
[2] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
[3] 杨峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2): 301-311.
YANG Feng, NING Zhengfu, HU Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311.
[4] 钟太贤. 中国南方海相页岩孔隙结构特征[J]. 天然气工业, 2012, 32(9): 1-4.
ZHONG Taixian. Characteristics of pore structure of marine shales in South China[J]. Natural Gas Industry, 2012, 32(9): 1-4.
[5] 李治平, 李智锋. 页岩气纳米级孔隙渗流动态特征[J]. 天然气工业, 2012, 32(4): 50-53.
LI Zhiping, LI Zhifeng. Dynamic characteristics of shale gas flow in nanoscale pores[J]. Natural Gas Industry, 2012, 32(4): 50-53.
[6] PASCAL H. Non-steady flow through porous media in the presence of a threshold gradient[J]. Acta Mechanica, 1981, 39(3/4): 207-224.
[7] 刘慈群. 有起始比降固结问题的近似解[J]. 岩土工程学报, 1982, 4(3): 107-109.
LIU Ciqun. Approximate solution of a starting gradient ratio consolidation problem[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(3): 107-109.
[8] 李凡华, 刘慈群. 含启动压力梯度的不定常渗流的压力动态分析[J]. 油气井测试, 1997(1): 1-4.
LI Fanhua, LIU Ciqun. Pressure transient analysis for unsteady porous flow with start-up pressure derivative[J]. Well Testing, 1997(1): 1-4.
[9] 尹虎, 王新海, 姜永, 等. 页岩气藏渗流数值模拟及井底压力动态分析[J]. 长江大学学报(自然科学版): 理工, 2012, 9(8): 68-71.
YIN Hu, WANG Xinhai, JIANG Yong, et al. Numerical simulation of shale gas seepage and transient analysis of bottom-hole pressure[J]. Journal of Yangtze University(Natural Science Edition): Sci & Eng, 2012, 9(8): 68-71.
[10] 于荣泽, 张晓伟, 卞亚南, 等. 页岩气藏流动机理与产能影响因素分析[J]. 天然气工业, 2012, 32(9): 10-15.
YU Rongze, ZHANG Xiaowei, BIAN Ya’nan, et al. Flow mechanism of shale gas reservoirs and influential factors of their productivity[J]. Natural Gas Industry, 2012, 32(9): 10-15.
[11] 程远方, 董丙响, 时贤, 等. 页岩气藏三孔双渗模型的渗流机理[J]. 天然气工业, 2012, 32(9): 44-47.
CHENG Yuanfang, DONG Bingxiang, SHI Xian, et al. Seepage mechanism of a tripleporosity/dualpermeability model for shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(9): 44-47.
[12] 李亚洲, 李勇明, 罗攀, 等. 页岩气渗流机理与产能研究[J]. 断块油气田, 2013, 20(2): 186-190.
LI Yazhou, LI Yongming, LUO Pan, et al. Study on seepage mechanism and productivity of shale gas[J]. Fault-Block Oil & Gas Field, 2013, 20(2): 186-190.
[13] 葛家理. 油气层渗流力学[M]. 北京: 石油工业出版社, 1982.
GE Jiali. The oil and gas flow through porous media[M]. Beijing: Petroleum Industry Press, 1982.
[14] 朱维耀, 马千, 邓佳, 等. 纳微米级孔隙气体流动数学模型及应用[J]. 北京科技大学学报, 2014, 36(6): 709-715.
ZHU Weiyao, MA Qian, DENG Jia, et al. Mathematical model and application of gas flow in nano-micron pores[J]. Journal of University of Science and Technology Beijing, 2014, 36(6): 709-715.
[15] 郭为, 熊伟, 高树生, 等. 页岩气等温吸附/解吸特征[J]. 中南大学学报(自然科学版), 2013, 44(7): 2836-2840.
GUO Wei, XIONG Wei, GAO Shusheng, et al. Isothermal adsorption/desorption characteristics of shale gas[J]. Journal of Central South University(Science and Technology), 2013, 44(7): 2836-2840.
[16] GERAMI S, POOLADI-DARVISH M, MORAD K, et al. Type curves for dry CBM reservoirs with equilibrium desorption[J]. Journal of Canadian Petroleum Technology, 2008, 47(7): 48-56.
[17] DENG Jia, ZHU Weiyao, MA Qian. A new seepage model for shale gas reservoir and productivity analysis of fractured well[J]. Fuel, 2014, 124(15): 232-240.
[18] AGARWAL R G, GARDNER D C, FUSSELL D D. Analyzing well production data using combined-type-curve and decline-curve analysis concepts[J]. SPE Reservoir Evaluation & Engineering, 1999, 2(5): 478-486.
文章导航

/