对山西保德扒楼沟剖面二叠系曲流河砂体进行实测、精细解剖和岩相分析,建立不同类型河道砂体的构型模式,定量表征其内部沉积非均质性,预测不同类型河道砂体的剩余油聚集区。基于露头的岩性、粒度、沉积构造和颜色等特征,在扒楼沟二叠系曲流河砂体中识别出8种岩相类型,通过对砂体进行精细解剖与岩相分析,将河道下部槽状交错层理砂体从传统定义的边滩砂体中划分出来称为“底滩”,而将河道上部板状层理砂体称为“边滩”。在精细刻画河道内底滩与边滩砂体沉积特征及叠置关系的基础上,识别出侧向迁移型、串沟截直型、颈项截直型及废弃河道型4种河道砂体。结合不同类型河道砂体构型与非均质性特征,认为侧向迁移型河道砂体非均质性较弱,剩余油分布较少;串沟截直型与废弃河道型河道砂体非均质性较强,剩余油相对富集;颈项截直型河道砂体非均质性最强,剩余油最为富集。图6表3参14
Through actual measurement, careful sand body anatomy and lithofacies analysis of the meandering river sand bodies in the Permian of the Palougou profile in Baode county, Shanxi province, the architectural models of different kinds of meandering river sand bodies are established to characterize their interior sedimentary heterogeneity quantitatively, and predict the remaining oil areas in different kinds of meandering river sand bodies. Based on the outcrop characteristics, such as lithology, grain size, sedimentary structure, color, and so on, eight kinds of lithofacies are identified. By careful anatomy and lithofacies analysis of sand bodies, the bottom trough cross bedding sand body was separated from the classical point bar and named “bottom bar”, and the upper planar cross bedding was named “marginal bar”. Based on fine description of the sedimentary characteristics and superimposed relationships of bottom bar and marginal bar, four kinds of channel sand bodies, namely, lateral migration channel type, chute cutoff channel type, neck cutoff channel type and abandoned channel type, were identified. According to the architecture and heterogeneity characteristics of different types of channel sand bodies, it is concluded the lateral migration channel sand body has weak heterogeneity and little remaining oil, the chute cutoff and abandoned channel sand bodies with a little stronger heterogeneity is richer in remaining oil, and the neck cutoff channel sand body with the strongest heterogeneity has the most abundant remaining oil.
[1] 封从军, 鲍志东, 杨玲, 等. 三角洲前缘水下分流河道储集层构型及剩余油分布[J]. 石油勘探与开发, 2014, 41(3): 323-329.
FENG Congjun, BAO Zhidong, YANG Ling, et al. Reservoir architecture and remaining oil distribution of deltaic front underwater distributary channel[J]. Petroleum Exploration and Development, 2014, 41(3): 323-329.
[2] 周银邦, 吴胜和, 计秉玉, 等. 曲流河储层构型表征研究进展[J]. 地球科学进展, 2011, 26(7): 695-702.
ZHOU Yinbang, WU Shenghe, JI Bingyu, et al. Research progress on the characterization of fluvial reservoir architecture[J]. Advances in Earth Science, 2011, 26(7): 695-702.
[3] 闫百泉, 张鑫磊, 于利民, 等. 基于岩心及密井网的点坝构型与剩余油分析[J]. 石油勘探与开发, 2014, 41(5): 597-604.
YAN Baiquan, ZHANG Xinlei, YU Limin, et al. Point bar configuration and residual oil analysis based on core and dense well pattern[J]. Petroleum Exploration and Development, 2014, 41(5): 597-604.
[4] MIALL A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check[J]. AAPG Bulletin, 2006, 90(7): 989-1002.
[5] 赵伦, 王进财, 陈礼, 等. 砂体叠置结构及构型特征对水驱规律的影响: 以哈萨克斯坦南图尔盖盆地Kumkol油田为例[J]. 石油勘探与开发, 2014, 41(1): 86-94.
ZHAO Lun, WANG Jincai, CHEN Li, et al. Influences of sandstone superimposed structure and architecture on waterflooding mechanisms: A case study of Kumkol Oilfield in the South Turgay Basin, Kazakhstan[J]. Petroleum Exploration and Development, 2014, 41(1): 86-94.
[6] 李宇鹏, 吴胜和. 储集层构型分级套合模拟方法[J]. 石油勘探与开发, 2013, 40(5): 630-635.
LI Yupeng, WU Shenghe. Hierarchical nested simulation approach in reservoir architecture modeling[J]. Petroleum Exploration and Development, 2013, 40(5): 630-635.
[7] JORDAN D W, PRYOR W A. Hierarchical levels of heterogeneity in a Mississippi River meander belt and application to reservoir systems[J]. AAPG Bulletin, 1992, 76: 1601-1624.
[8] 焦养泉, 李思田. 陆相盆地露头储层地质建模研究与概念体系[J]. 石油实验地质, 1998, 20(4): 38-45.
JIAO Yangquan, LI Sitian. Geologic modeling for outcrop reservoir of continental basin and the conceptual systems[J]. Experimental Petroleum Geology, 1998, 20(4): 38-45.
[9] 谭程鹏, 于兴河, 李胜利, 等. 辫状河-曲流河转换模式探讨: 以准噶尔盆地南缘头屯河组露头为例[J]. 沉积学报, 2014, 32(3): 450-458.
TAN Chengpeng, YU Xinghe, LI Shengli, et al. Discussion on the model of braided river transform to meandering river: As an example of Toutunhe Formation in southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 450-458.
[10] DONSELAAR M E, OVEREEM I. Connectivity of fluvial point-bar deposits: An example from the Miocene Huesca fluvial fan, Ebro Basin, Spain[J]. AAPG Bulletin, 2008, 92(9): 1109-1129.
[11] 杨丽莎, 陈彬滔, 李顺利, 等. 基于成因类型的砂质辫状河泥岩分布模式: 以山西大同侏罗系砂质辫状河露头为例[J]. 天然气地球科学, 2013, 24(1): 93-98.
YANG Lisha, CHEN Bintao, LI Shunli, et al. Pattern of genesis-based mudstone distribution for sandy braided river: A case of sandy braided-river outcrop, Datong, Shanxi province, China[J]. Natural Gas Geoscience, 2013, 24(1): 93-98.
[12] 陈彬涛, 于兴河, 王天奇, 等. 砂质辫状河岩相与构型特征: 以山西大同盆地中侏罗统云冈组露头为例[J]. 石油天然气与地质, 2015, 36(1): 111-117.
CHEN Bintao, YU Xinghe, WANG Tianqi, et al. Lithofacies and architecture characteristics of sandy braided river deposits: A case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi Province[J]. Oil & Gas Geology, 2015, 36(1): 111-117.
[13] 王国茹. 鄂尔多斯盆地北部上古生界物源及层序岩相古地理研究[D]. 成都: 成都理工大学, 2011.
WANG Guoru. The study of sources and sequence-lithofaces palaeogeography of Upper Palaeozoic, Northern Ordos[D]. Chengdu: Chengdu University of Technology, 2011.
[14] 李明瑞. 鄂尔多斯盆地北部上古生界主要含气砂体沉积特征及储层控制因素研究[D]. 成都: 成都理工大学, 2011.
LI Mingrui. Depositional character and control factors of reservoir sandbody in major gas-bearing interval of upper Paleozoic in North Ordos basin[D]. Chengdu: Chengdu University of Technology, 2011.