石油工程

大型海洋石油平台风振响应

  • 刘红兵 ,
  • 陈国明 ,
  • 吕涛 ,
  • 林红 ,
  • 朱本瑞 ,
  • 黄翱
展开
  • 1. 中国石油大学(华东)海洋油气装备与安全技术研究中心;
    2. 天津大学建筑工程学院
刘红兵(1988-),男,湖北黄冈人,中国石油大学(华东)在读博士研究生,主要从事海洋石油装备强度与可靠性研究。地址:山东省青岛经济技术开发区长江西路66号,中国石油大学机电工程学院,邮政编码:266580。E-mail: hb_liu1988@163.com

网络出版日期: 2016-11-02

基金资助

国家自然科学基金(51579246); 山东省青岛市应用基础研究计划项目(青年专项)(14-2-4-58-jch); 中央高校基本科研业务费专项资金(15CX06058A; 15CX06056A; 15CX05003A)

Wind-induced response of large offshore oil platform

  • LIU Hongbing ,
  • CHEN Guoming ,
  • LYU Tao ,
  • LIN Hong ,
  • ZHU Benrui ,
  • HUANG Ao
Expand
  • 1. Centre for Offshore Engineering and Safety Technology, China University of Petroleum, Qingdao 266580, China;
    2. School of Civil Engineering, Tianjin University, Tianjin 300072, China

Online published: 2016-11-02

摘要

针对大型海洋石油平台钻井架、吊机等高耸镂空结构抗风敏感性问题,进行了高耸结构风致振动响应分析。基于相似准则开展了0~360°全风向角下大型海洋石油平台高频动态测力天平实验,建立了平台结构全风向角下脉动风载荷空间分布估计模型,进行了全风向角下平台结构风致振动评估,获得了平台结构风致振动特性和阵风载荷因子变化规律。结果表明:平台结构横风向脉动风载荷均方根值约为顺风向脉动风载荷均方根值的10%;平台结构风致振动主要集中于井架等高耸镂空结构,横风向加速度均方根值约为顺风向加速度均方根值的55%;井架等高耸结构对横风向脉动风载荷动力放大作用较大。进行大型海洋石油平台结构抗风设计时不应忽略横风向风载荷作用,还要重点关注高耸井架顶部和底部的风振响应以及高耸结构对横风向脉动风载荷的放大作用。图12表3参18

本文引用格式

刘红兵 , 陈国明 , 吕涛 , 林红 , 朱本瑞 , 黄翱 . 大型海洋石油平台风振响应[J]. 石油勘探与开发, 2016 , 43(4) : 647 -655 . DOI: 10.11698/PED.2016.04.19

Abstract

In connection with wind sensitivity for the towering and hollowed-out structures (drilling derrick, crane, etc) of large offshore oil platform, the wind-induced response of towering structure was studied. By the similarity criteria, high frequency force balance tests for the large offshore oil platform under 0-360° wind directions were carried out, and the spatial distribution model of fluctuating wind load acting on platform was presented. Also, the characteristics of wind-induced vibration and the changing rule gust loading factors were obtained precisely through wind-induced assessment in all directions. The results show that: the RMS (Root Mean Square) of the fluctuating across-wind load is about 10% of the fluctuating along-wind load on the platform; the vibration is mainly focused on the towering and hollowed-out structure like derrick, and the RMS of the across-wind acceleration is about 55% of the along-wind acceleration; the towering derrick has a big dynamic magnification of fluctuating across-wind load. The across-wind load can not be neglected in wind resistance design of large offshore oil platform, also the wind-induced response on the top/bottom of derrick and the magnification of fluctuating across-wind load of towering structure should be mainly considered.

参考文献

[1] 刘红兵, 陈国明, 朱本瑞, 等. 海洋平台上部组块数字风洞系统[C]//中国钢结构协会海洋钢结构分会2014年学术会议论文集. 威海: 中国钢结构协会, 2014: 519-526.
LIU Hongbing, CHEN Guoming, ZHU Benrui, et al. The digital wind tunnel system for topside module of offshore oil platforms[C]//Proceedings of the 2014 Marine Steel Structure Branch of China Steel Construction Society Conference. Weihai: China Steel Construction Society, 2014: 519-526.
[2] MMS. Assessment of fixed offshore platform performance in hurricanes Andrew, Lili and Ivan[R]. MMS 549, 2006.
[3] MMS. Assessment of fixed offshore platform performance in hurricanes Katrina and Rita [R]. MMS 578, 2007
[4] HUANG M F, LOU W, YANG L, et al. Experimental and computational simulation for wind effects on the Zhoushan transmission towers[J]. Structure and Infrastructure Engineering, 2010, 8(8): 781-799.
[5] CARRIL C F, ISYUMOV N, BRASIL R M L R F. Experimental study of the wind forces on rectangular latticed communication towers with antennas[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2003, 91(8): 1007-1022.
[6] 严亚林, 唐意, 金新阳. 超高层建筑横风向风振响应计算的响应谱法[J]. 土木工程学报, 2015, 48(s1): 82-87.
YAN Yalin, TANG Yi, JIN Xinyang. Response spectrum method for calculation of across-wind induced response of super high-rise buildings[J]. China Civil Engineering Journal, 2015, 48(s1): 82-87.
[7] LIN W E, SAVORY E, MCINTYRE R P, et al. The response of an overhead electrical power transmission line to two types of wind forcing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 100(1): 58-69.
[8] 李玉学, 白硕, 杨庆山, 等. 大跨度柱面网壳结构风荷载特性风洞试验研究[J]. 建筑结构学报, 2015, 36(4): 105-111.
LI Yuxue, BAI Shuo, YANG Qingshan, et al. Experimental study of wind load characteristics on large-span cylindrical latticed shell[J]. Journal of Building Structures, 2015, 36(4): 105-111.
[9] 朱亚洲, 孙承猛, 张晓宇, 等. 自升式平台桩腿强度对弦管间距敏感性分析[J]. 石油勘探与开发, 2015, 42(5): 656-661.
ZHU Yazhou, SUN Chengmeng, ZHANG Xiaoyu, et al. Sensitivity of self-elevating unit leg strength to different chord space[J]. Petroleum Exploration and Development, 2015, 42(5): 656-661.
[10] 张庆华, 顾明. 基于高频天平测力试验的500 kV单回路输电塔风致响应研究[J]. 振动与冲击, 2014(4): 156-160, 172.
ZHANG Qinghua, GU Ming. Wind-induced response of a 500 kV single-circuit transmission tower based on high-frequency force-balance technique[J]. Journal of Vibration and Shock, 2014(4): 156-160, 172.
[11] CROONENBORGHS E, SAUDER T, FOUQUES S, et al. Comparison of various methods for the assessment of wind and current loads on a semi-submersible platform[R]. OTC 24399, 2013.
[12] 肖正直, 李正良, 汪之松, 等. 基于HFFB试验的特高压输电塔风振响应分析[J]. 工程力学, 2010, 27(4): 218-225.
XIAO Zhengzhi, LI Zhengliang, WANG Zhisong, et al. Wind-induced vibration analysis of UHV transmission Tower based on the HFFB tests[J]. Engineering Mechanics, 2010, 27(4): 218-225.
[13] 谢华平, 张回, 陈俊, 等. 输电塔脉动风荷载功率谱模型及时程模拟[J]. 湘潭大学自然科学学报, 2011, 33(3): 70-76.
XIE Huaping, ZHANG Hui, CHEN Jun, et al. Power spectra model and time-history simulation of fluctuating wind loading acting on transmission tower[J]. Natural Science Journal of Xiangtan University, 2011, 33(3): 70-76.
[14] 程丰, 胡国风. 高频底座天平的研制与应用[J]. 气动实验与测量控制, 1995, 9(1): 58-61.
CHENG Feng, HU Guofeng. Design and application of high frequency dynamic balance JZW001[J]. Experiments and Measurements in Fluid Mechanics, 1995, 9(1): 58-61.
[15] 邹良浩, 梁枢果. 半刚性模型风洞试验荷载谱的处理方法[J]. 实验流体力学, 2007, 21(3): 76-81.
ZOU Lianghao, LIANG Shuguo. A method to evaluate wind force spectra of semi-rigid model in wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 76-81.
[16] 吴承卉, 黄铭枫, 姜雄, 等. 基于半刚性模型风洞试验的锅炉塔架风振分析[J]. 空气动力学学报, 2015, 33(3): 353-359.
WU Chenghui, HUANG Mingfeng, JIANG Xiong, et al. Wind-induced vibration analysis of lattice-truss tower installed with a boiler based on semi-rigid model test[J]. Acta Aerodynamica Sinica, 2015, 33(3): 353-359.
[17] 中华人民共和国建设部. 高耸结构设计规范: GB 50135-2006[S]. 北京: 中国建筑工业出版社, 2006.
The Ministry of Construction of the People’s Republic of China. Code for design of high-rising structures: GB 50135-2006[S]. Beijing: China Building Industry Press, 2006.
[18] ASCE. Minimum design loads for buildings and other structures: ASCE 7-10[S]. New York: ASCE, 2010.
文章导航

/