[1] 梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展(三): 南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2): 1-19.
LIANG Digang, GUO Tonglou, BIAN Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China( part 3): Controlling factors on the sedimentary facies and development of Paleozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19.
[2] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[3] 黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发, 2012, 39(1): 69-76.
HUANG Jinliang, ZOU Caineng, LI Jianzhong, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1): 69-76.
[4] 胡琳, 朱炎铭, 陈尚斌, 等. 中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析[J]. 煤炭学报, 2012, 37(11): 1871-1877.
HU Lin, ZHU Yanming, CHEN Shangbin, et al. Resource potential analysis of shale gas in Lower Cambrian Qiongzhusi Formation in Middle & Upper Yangtze region[J]. Journal of China Coal Society, 2012, 37(11): 1871-1877.
[5] 韩双彪, 张金川, 李玉喜, 等. 黔北地区下寒武统牛蹄塘组页岩气地质调查井位优选[J]. 天然气地球科学, 2013, 24(1): 182-187.
HAN Shuangbiao, ZHANG Jinchuan, LI Yuxi, et al. The optimum selecting of shale gas well location for geological investigation in Niutitang Formation in Lower Cambrian, northern Guizhou area[J]. Natural Gas Geoscience, 2013, 24(1): 182-187.
[6] 易同生, 赵霞. 贵州下寒武统牛蹄塘组页岩储层特征及其分布规律[J]. 天然气工业, 2014, 34(8): 8-14.
YI Tongsheng, ZHAO Xia. Charasteristics and distribution patterns of the Lower Cambrian Niutitang Shale reservoirs in Guizhou, China[J]. Natural Gas Industry, 2014, 34(8): 8-14.
[7] 梁兴, 张廷山, 杨洋, 等. 滇黔北地区筇竹寺组高演化页岩气储层微观孔隙特征及其控制因素[J]. 天然气工业, 2014, 34(2): 18-26.
LIANG Xing, ZHANG Tingshan, YANG Yang, et al. Microscipic pore structure and its controlling factors of overmature shale in the Lower Cambrian Qiongzhusi Fm, northern Yunnan and Guizhou provinces of China[J]. Natural Gas Industry, 2014, 34(2): 18-26.
[8] 夏嘉, 王思波, 曹涛涛, 等. 黔北地区下寒武统页岩孔隙结构特征及其含气性能[J]. 天然气地球科学, 2015, 26(9): 1744-1754.
XIA Jia, WANG Sibo, CAO Taotao, et al. The characteristics of pore structure and its gas storage capability of the Lower Cambrian shales from Northern Guizhou Province[J]. Natural Gas Geoscience, 2015, 26(9): 1744-1754.
[9] 郑平, 施雨华, 邹春艳, 等. 高石梯—磨溪地区灯影组、龙王庙组天然气气源分析[J]. 天然气工业, 2014, 34(3): 50-54.
ZHENG Ping, SHI Yuhua, ZOU Chunyan, et al. Natural gas sources in the Dengying and Longwangmiao Fms in the Gaoshiti-Maoxi area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 50-54.
[10] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-294.
ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-294.
[11] 刘德汗, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.
LIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological application[J]. Chinese Science Bulletin, 2013, 58(13): 1228 -1241.
[12] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2013, 41(1): 28-36.
GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 41(1): 28-36.
[13] 刘树根, 冉波, 郭彤楼, 等. 四川盆地及周缘下古生界富有机质黑色页岩: 从优质烃源岩到页岩气产层[M]. 北京: 科学出版社, 2014: 42-294.
LIU Shugen, RAN Bo, GUO Tonglou, et al. Lower Palaeozoic organic-matter-rich black shale in the Sichuan Basin and its periphery: From oil-prone source rock to gas-producting shale reservoir [M]. Beijing: Science Press, 2014: 42-294.
[14] 林拓, 张金川, 李博, 等. 湘西北常页1井下寒武统牛蹄塘组页岩气聚集条件及含气特征[J]. 石油学报, 2014, 35(5): 839-846.
LIN Tuo, ZHANG Jinchuan, LI Bo, et al. Shale gas accumulation conditions and gas-bearing properties of the Lower Cambrian Niutitang Formation in Well Changye 1, northwestern Hunan[J]. Acta Petrolei Sinica, 2014, 35(5): 839-846.
[15] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnet shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[16] LOUCKS R G, REED R M, RUPPLE S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mustones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
[17] 王玉满, 董大忠, 李建忠, 等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报, 2012, 33(4): 551-561.
WANG Yuman, DONG Dazhong, LI Jianzhong, et al. Reservoir characteristics of shale gas in Longmaxi Formaion of the Lower Silurian, southern Sichuan[J]. Acta Petrolei Sinica, 2012, 33(4): 551-561.
[18] 蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2012, 30(10): 7-12.
JIANG Yuqiang, DONG Dazhong, QI Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2012, 30(10): 7-12.
[19] 王社教, 杨涛, 张国生, 等. 页岩气主要富集因素与核心区选择及评价[J]. 中国工程科学, 2012, 14(6): 94-100.
WANG Shejiao, YANG Tao, ZHANG Guosheng, et al. Shale gas enrichment factors and the selection and evaluation of the core area[J]. Engineering Science, 2012, 14(6): 94-100.
[20] 王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486.
WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekininsis, 2014, 50(3): 476-486.
[21] 张海全, 许效松, 刘伟, 等. 中上扬子地区晚奥陶世-早志留世岩相古地理演化与黑色页岩的关系[J]. 沉积与特提斯地质, 2013, 33(2): 17-24.
ZHANG Haiquan, XU Xiaosong, LIU Wei, et al. Late Ordivician- Early Silurian sedimentary facies and palaeogeographic evolution and its bearings on the black shales in the Middle-Upper Yangtze area[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(2): 17-24.
[22] 王祥, 刘玉华, 张敏, 等. 页岩气形成条件及成藏影响因素研究[J]. 天然气地球科学, 2010, 21(2): 350-356.
WANG Xiang, LIU Yuhua, ZHANG Min, et al. Conditions of formation and accumulation for shale gas[J]. Natural Gas Geoscience, 2010, 21(2): 350-356.
[23] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18.
ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18.
[24] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-702.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(1)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-702.
[25] 魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35.
WEI Guoqi, YANG Wei, DU Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35.
[26] 李胜荣, 高振敏. 湘黔地区牛蹄塘组黑色岩系稀土特征: 兼论海相热水沉积岩稀土模式[J]. 矿物学报, 1995, 15(2): 225-234.
LI Shengrong, GAO Zhenmin. REE characteristics of black rock series of the Lower Cambrian Niutitang Formation in Hunan-Guizhou provinces, China, with a discussion on the REE patterns in marine hydrothermal sediments[J]. Acta Mineralogica Sinica, 1995, 15(2): 225-234.
[27] 江永宏, 李胜荣. 湘、黔地区前寒武—寒武纪过渡时期硅质岩生成环境研究[J]. 地学前缘, 2005, 12(4): 622-629.
JIANG Yonghong, LI Shengrong. A study of the fluid environment of silicalite of trasitional Precambrian-Cambrian age in Hunan and Guizhou provinces[J]. Earth Science Frontiers, 2005, 12(4): 622-629.
[28] 陈旭, 戎嘉余. 从生物地层学到大地构造学: 以华南奥陶系和志留系为例[J]. 现代地质, 1999, 13(4): 385-389.
CHEN Xu, RONG Jiayu. From biostratigraphy to tectonics: With Ordovician and Silurian of south China as an example[J]. Geoscience, 1999, 13(4): 385-389.
[29] 刘树根, 邓宾, 李智武, 等. 盆山结构与油气分布: 以四川盆地为例[J]. 岩石学报, 2011, 27(3): 627-635.
LIU Shugen, DENG Bin, LI Zhiwu, et al. The texture of sedimentary basin- organic belt system and its influence on oil/gas distribution: A case study from Sichuan basin[J]. Acta Petrologica Sinica, 2011, 27(3): 627-635.
[30] 戎嘉余, 陈旭. 华南晚奥陶世的动物群分异及生物相、岩相与环境模式[J]. 古生物学报, 1987, 26(5): 507-535.
RONG Jiayu, CHEN Xu. Faunal differentiation, biofacies and lithofacies pattern of late Ordovician (Ashgillian) in South China[J]. Acta Palaeontologica Sinica, 1987, 26(5): 507-535.
[31] 郭英海, 李壮福, 李大华, 等. 四川地区早志留世岩相古地理[J]. 古地理学报, 2004, 6(1): 20-29.
GUO Yinghai, LI Zhuangfu, LI Dahua, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 2004, 6(1): 20-29.
[32] 牟传龙, 周恳恳, 梁薇, 等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011, 85(4): 526-532.
MOU Chuanlong, ZHOU Kenken, LIANG Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532.
[33] 赵文智, 王兆云, 张水昌, 等. 有机质“接力成气”模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005, 32(2): 1-7.
ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang, et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7.
[34] 赵文智, 王兆云, 王东良, 等. 分散液态烃的成藏地位与意义[J]. 石油勘探与开发, 2015, 42(2): 401-413.
ZHAO Wenzhi, WANG Zhaoyun, WANG Dongliang, et al. Contribution and significance of dispersed liquid hydrocarbons to reservoir formation[J]. Petroleum Exploration and Development, 2015, 42(2): 401-413.
[35] 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277.
DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277.
[36] 周进高, 徐春春, 姚根顺, 等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发, 2015, 42(2): 158-166.
ZHOU Jingao, XU Chunchun, YAO Genshun, et al. Genesis and evolution of Lower Cambrian Longwangmiao Formation reservoirs, Sichuan Basin, SE Chian[J]. Petroleum Exploration and Development, 2015, 42(2): 158-166.
[37] 刘洪林, 王红岩, 方朝合, 等. 中国南方海相页岩气超压机制及选区指标研究[J]. 地学前缘, 2016, 23(2): 48-54.
LIU Honglin, WANG Hongyan, FANG Zhaohe, et al. The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China[J]. Earth Science Frontiers, 2016, 23(2): 48-54.
[38] CAMPBELL T, NEWTON M A, BOYD V, et al. Effects of precursor and support variation in the genesis of uranium oxide catalysts for CO oxidation and selective reduction of NO: Synthesis and characterization[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2885-2893.
[39] 沈平, 朱惠英, 徐永昌. 沉积岩中铀、钍、钾分布特征[J]. 沉积学报, 1983, 1(3): 109-122.
SHEN Ping, ZHU Huiying, XU Yongchang. Distribution features of Uranium, Thorium, and Potassium in the sedimentary rocks[J]. Acta Sedimentologica Sinica, 1983, 1(3): 109-122.
[40] 梅水泉, 周续业, 李小朗, 等. 诸广—九嶷地区富铀矿的水成叠加作用初探[J]. 铀矿地质, 1998, 14(1): 7-11.
MEI Shuiquan, ZHOU Xuye, LI Xiaolang, et al. Discussion on hydrogenic superim position of high-grade uranium deposits in Zhuguang-Jiuyi region[J]. Uranium Geology, 1998, 14(1): 7-11.
[41] 卢红选, 孟自芳, 李斌, 等. 含铀物质对褐煤有机质热模拟生烃的影响[J]. 新疆石油地质, 2007, 28(6): 718-720.
LU Hongxuan, MENG Zifang, LI Bin, et al. Effect of uranium substance on hydrocarbon generation from lignite by hydrous pyrolysis[J]. Xinjiang Petroleum Geology, 2007, 28(6): 718-720.
[42] 毛光周, 刘池洋, 刘宝泉, 等. 铀对I型低熟烃源岩生烃演化的影响[J]. 中国石油大学学报(自然科学版), 2012, 36(2): 172-182.
MAO Guangzhou, LIU Chiyang, LIU Baoquan, et al. Effects of uranium on hydrocarbon generation of lower-mature hydrocarbon source rocks containing kerogen type I[J]. Journal of China University of Petroleum: Natural Science Edition, 2012, 36(2): 172-182.
[43] 王社教, 胡圣标, 汪集旸, 等. 塔里木盆地沉积层放射性生热的热效应及其意义[J]. 石油勘探与开发, 1999, 26(5): 36-38.
WANG Shejiao, HU Shengbiao, WANG Jiyang, et al. The thermal effect of radioactive heat deposition in the Tarim Basin and its significance[J]. Petroleum Exploration and Development, 1999, 26(5): 36-38.
[44] LIN L H, WANG P L, RUMBLE D, et al. Long-term sustainability of a high-energy, low-diversity crustal biome[J]. Science, 2006, 314(5798): 479-482.
[45] CHALMERS G R, BUSTIN R M, POER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
[46] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
[47] CHEN J, XIAO X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129(4): 173-181.
[48] 吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-177.
WU Songtao, ZHU Rukai, CUI Jinggang, et al. Characterization of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-177.
[49] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-179.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-179.