Most download

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All
  • Most Downloaded in Recent Month
  • Most Downloaded in Recent Year

Please wait a minute...
  • Select all
    |
  • PETROLEUM EXPLORATION
    KUANG Lichun, LIU He, REN Yili, LUO Kai, SHI Mingyu, SU Jian, LI Xin
    Petroleum Exploration and Development. 2021, 48(1): 1-11. https://doi.org/10.11698/PED.2021.01.01
    According to the actual demands of petroleum exploration and development, this paper describes the research progress and application of artificial intelligence technology in the field of petroleum exploration and development, and discusses the applications and development directions of artificial intelligence technology in the future. Machine learning technology has preliminary application in lithology identification, logging curve reconstruction, reservoir parameter prediction and other logging processing and interpretation, and has shown great potential. Computer vision is effective in the seismic first breaks picking, fault identification and other seismic processing and interpretation. Deep learning and optimization technology has been applied to reservoir engineering, and realized the real-time optimization of waterflooding development and prediction of oil and gas field production. The application of data mining in drilling and completion, surface engineering and other fields has formed intelligent equipment and integrated software. The potential development directions of artificial intelligence in the field of petroleum exploration and development are intelligent production equipment, automatic processing interpretation and professional software platform. The focus of development is digital basin, fast intelligent imaging logging tool, intelligent node seismic acquisition system, intelligent rotary steering drilling, intelligent fracturing technology and equipment, real-time monitoring and control engineering of separate layer injection and production.
  • PETROLEUM EXPLORATION
    ZHANG Xi, ZHANG Tingshan, LEI Bianjun, ZHANG Jingxuan, ZHANG Ji, ZHAO Zhongjun, YONG Jinjie
    Petroleum Exploration and Development. 2019, 46(6): 1115-1127. https://doi.org/10.11698/PED.2019.06.09
    The origin of grain dolomite in M55 Member of Ordovician Majiagou Formation in northwestern Ordos Basin was studied by geochemical and petrological tests on core samples. Observation of cores, thin sections and casting thin sections, analysis of cathodoluminescence, X-ray diffraction, microscopic sampling of trace elements, laser sampling δ18O and δ13C, and fluid inclusion homogenization temperature were conducted. The results show that the dolomite is the product of recrystallization of micritic to crystal powder dolomite rather than the product of dolomitization of grain limestone. In the spherical grains are residual gypsum and halite pseudo crystals identical with those in the host micritic dolomite. The spherical particles of dolomite has similar trace elements and δ18O and δ13C characteristics to micritic dolomite. Furthermore, Mn/Sr ratio of the fine-medium dolomite between the dolomite grains is about 5-8, while Mn/Sr ratios of calcite in limestone, micritic dolostone in micritic dolomite, and micritic and powdery dolomite are about 0-2, indicating that the dolomite experienced strong diagenesis. Homogenization temperature of inclusions of fine-medium dolomite is about 148. 19 ℃, higher than that of inclusions in micritic to crystal powder dolomite (about 122.60 ℃), which also supports the conclusion that the grain dolomite experienced burial diagenesis and negative shift of δ18O and δ13C. The δ18O, δ13C values of micritic to crystal powder dolomite match with the negative migration, but those of calcite in limestone don’t. It is of great significance to elucidate the genesis of “dolomite recrystallization” for the prediction of such dolomite reservoirs.
  • PETROLEUM EXPLORATION
    Youxing YANG, Junfeng ZHANG, Jinhu ZHANG, Yongjin GAO, Xingui ZHOU, Xiangcan SUN, Lei WEN, Miaoqing MIAO
    Petroleum Exploration and Development. 2022, 49(4): 670-682. https://doi.org/10.11698/PED.20210611

    Based on field geological survey, interpretation of seismic data and analysis of drilling and logging data, the evolution of geological structures, stratigraphic sedimentary filling sequence and sedimentary system around the Bogda Mountain were analyzed according to the idea of "structure controlling basin, basin controlling facies and facies controlling assemblages". The tectonic evolution of the basin around the Bogda Mountain can be divided into nine stages. The Middle-Late Permian-Middle-Late Triassic was the development stage of intracontinental rift, foreland basin and inland depression basin when lake, fan delta and braided river delta sedimentary facies developed. Early intracontinental rifting, late Permian tectonic uplift, and middle-late Triassic tectonic subsidence controlled the shape, type, subsidence rate and sedimentary system evolution of the basin. The Bogda Mountain area was the subsidence center and deposition center of the deep water lake basin in the Middle Permian with mainly deep-water deposition and local gravity flow deposition. This area had tectonic inversion in the Late Permian, when the Bogda Mountain uplifted to form a low bulge and a series of fan delta sand bodies. In the Middle-Late Triassic, subsidence occurred in the Bogda low uplift, characterized by extensive development of braided river delta deposits.

  • NEW ENERGY AND EMERGING FIELD
    ZOU Caineng, XIONG Bo, XUE Huaqing, ZHENG Dewen, GE Zhixin, WANG Ying, JIANG Luyang, PAN Songqi, WU Songtao
    Petroleum Exploration and Development. 2021, 48(2): 411-420. https://doi.org/10.11698/PED.2021.02.18
    Carbon dioxide is an important medium of the global carbon cycle, and has the dual properties of realizing the conversion of organic matter in the ecosystem and causing the greenhouse effect. The fixed or available carbon dioxide in the atmosphere is defined as “gray carbon”, while the carbon dioxide that cannot be fixed or used and remains in the atmosphere is called “black carbon”. Carbon neutral is the consensus of human development, but its implementation still faces many challenges in politics, resources, technology, market, and energy structure, etc. It is proposed that carbon replacement, carbon emission reduction, carbon sequestration, and carbon cycle are the four main approaches to achieve carbon neutral, among which carbon replacement is the backbone. New energy has become the leading role of the third energy conversion and will dominate carbon neutral in the future. Nowadays, solar energy, wind energy, hydropower, nuclear energy and hydrogen energy are the main forces of new energy, helping the power sector to achieve low carbon emissions. “Green hydrogen” is the reserve force of new energy, helping further reduce carbon emissions in industrial and transportation fields. Artificial carbon conversion technology is a bridge connecting new energy and fossil energy, effectively reducing the carbon emissions of fossil energy. It is predicted that the peak value of China’s carbon dioxide emissions will reach 110×108 t in 2030. The study predicts that China's carbon emissions will drop to 22×108 t, 33×108 t and 44×108 t, respectively, in 2060 according to three scenarios of high, medium, and low levels. To realize carbon neutral in China, seven implementation suggestions have been put forward to build a new “three small and one large” energy structure in China and promote the realization of China's energy independence strategy.
  • PETROLEUM EXPLORATION
    JIA Chengzao
    Petroleum Exploration and Development. 2017, 44(1): 1-11. https://doi.org/10.11698/PED.2017.01.01
    Great changes of the global energy industry have been caused by the rapid development of unconventional oil and gas. It is necessary to deeply consider the profound influence of the unconventional oil and gas revolution on the classical petroleum geological theory and to review geological conception of oil and gas accumulation elements and theoretic framework of petroleum system, giving the petroleum geology a new academic connotation. The author summarizes the significant progresses of global unconventional oil and gas exploration and development, and points out that the unconventional oil and gas revolution not only has a significant economic significance of oil and gas resource increment, but also brings great innovation to the theory of petroleum geology, thus having important scientific significances. This paper summarizes the core contents of four aspects of hydrocarbon generation, reservoir, distribution and development in classical petroleum geology, and comprehensively reviews the five important nodes in the developmental history of petroleum geology, which include anticline and trap theory, hydrocarbon generation from organic matter and petroleum system theory, continental petroleum geology, marine deepwater petroleum geology, continuous hydrocarbon accumulation and unconventional oil and gas geological theory. Unconventional oil and gas has made a great breakthrough to classical petroleum geology on the basic theoretical concepts such as trap, reservoir, caprock, resource distribution, and enrichment, thereby promoting the basic research on petroleum geology to transform into the whole process of hydrocarbon generation, whole type of reservoir, and whole genetic mechanism, deepening unconventional petroleum geology theory, promoting the development and reconstruction of petroleum geology system, representing great significances to the strategic development from conventional to unconventional oil and gas in China or even in the world.
  • PETROLEUM EXPLORATION
    ZOU Caineng, YANG Zhi, HE Dongbo, WEI Yunsheng, LI Jian, JIA Ailin, CHEN Jianjun, ZHAO Qun, LI Yilong, LI Jun, YANG Shen
    Petroleum Exploration and Development. 2018, 45(4): 575-587. https://doi.org/10.11698/PED.2018.04.04
    The development of natural gas in China has entered a golden and leap-forward stage, which is a necessary bridge to clean energy. This in-depth study on the status quo, theory, technology and prospect of natural gas development shows: (1) The global remaining proven recoverable reserves of natural gas are 186×1012 m3, and the reserves-production ratio is 52.4, indicating a solid resource base for long-term and rapid development. (2) Ten formation and distribution laws of conventional and unconventional natural gas reservoirs have been proposed. In terms of exploration geology, the theory of conventional “monolithic” giant gas fields with different gas sources, and an unconventional gas accumulation theory with continuous distribution of “sweet spots” in different lithologic reservoirs have been established; in terms of development geology, a development theory of conventional structural gas reservoirs is oriented to “controlling water intrusion”, while a development theory of unconventional gas is concentrated on artificial gas reservoirs. (3) With the geological resources of 210×1012 m3 (excluding hydrates) and the total proven rate of the resources less than 2% at present, the natural gas in China will see a constant increase in reserve and production; by 2030, the proven geological reserves of natural gas are expected to reach about (6 000-7 000)×108 m3, the production of conventional and unconventional natural gas each will reach about 1 000×108 m3, and the gas consumption will reach 5500×108 m3. The dependence on imported natural gas may be 64% by 2030, and 70% by 2050. (4) Ten measures for future development of natural gas have been proposed, including strengthening exploration in large-scale resource areas, increasing the development benefits of unconventional gas, and enhancing the peak adjusting capacity of gas storage and scale construction of liquified natural gas.
  • PETROLEUM EXPLORATION
    ZHAO Wenzhi, HU Suyun, HOU Lianhua, YANG Tao, LI Xin, GUO Bincheng, YANG Zhi
    Petroleum Exploration and Development. 2020, 47(1): 1-10. https://doi.org/10.11698/PED.2020.01.01
    Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about (700-900)×108 t, and the economic recoverable resources under medium oil price condition ($ 60-65/bbl) is (150-200)×108 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×108 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China's continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil.
  • 油气勘探
    Zou Caineng; Dong Dazhong; Wang Shejiao; Li Jianzhong; Li Xinjing; Wang Yuman; Li Denghua and Cheng Keming
    . 2010, 37(6): 1875-0.
    With Sichuan Basin as focus, this paper introduces the depositional environment, geochemical and reservoir characteristics, gas concentration and prospective resource potential of three different types of shale in China: marine shale, marine-terrigenous shale and lacustrine shale. Marine shale features high organic abundance (TOC: 1.0%-5.5% ), high-over maturity (Ro: 2%-5%), rich accumulation of shale gas (gas concentration: 1.17-6.02 m3/t) and continental shelf deposition, mainly distributed in the Paleozoic in the Yangtze area, Southern China, the Paleozoic in Northern China Platform and the Cambrian-Ordovician in Tarim Basin; Marine-terrigenous coalbed carbonaceous shale has high organic abundance (TOC: 2.6%-5.4%) and medium maturity (Ro: 1.1%-2.5%); Lacustrine shale in the Mesozoic and Cenozoic has high organic abundance (TOC: 0.5%-22%) and mid-low maturity (Ro: 0.6-1.5%). The study on shale reservoirs in the Lower Paleozoic in Sichuan Basin firstly indicated that Cambrian and Silurian marine shale developed lots of micro- and nanometer-sized pores, which is quite similar to the conditions in North America. Through comprehensive evaluation, it is thought that several shale gas intervals in Sichuan Basin are the practical targets for shale gas exploration and development, and that the Weiyuan-Changning area in the Mid-South of Sichuan Basin is the core area for shale gas exploration and development, which is characterized by high thermal evolution degree (Ro: 2%-4%), high porosity (3.0%-4.8%), high gas concentration (2.8-3.3 m3/t), high brittle mineral content (40%-80%) and proper burial depth (1 500-4 500m).
  • PETROLEUM EXPLORATION
    BORJIGIN Tenger, SHEN Baojian, YU Lingjie, YANG Yunfeng, ZHANG Wentao, TAO Cheng, XI Binbin, ZHANG Qingzhen, BAO Fang, QIN Jianzhong
    Petroleum Exploration and Development. 2017, 44(1): 69-78. https://doi.org/10.11698/PED.2017.01.08
    The source rock quality, organic pore structure, occurrence state and sealing mechanisms of shale gas in the Ordovician Wufeng-Longmaxi Formation (O3w-S1l), Fuling region, Sichuan Basin were studied using ultra-microscopic organic maceral identification, FIB-SEM, high temperature/pressure isothermal adsorption and isotopic age dating of noble gas. The results show that: (1) O3w-S1l organic-rich shale was mainly formed in a sedimentary environment with high productivity in surface water and hypoxia in bottom water, it can be divided into two sections according to TOC, of which the lower section (TOC≥3%) is mainly composed of graptolite, phytoplankton, acritarch, bacteria and solid bitumen, among them, graptolite is the main contributor to TOC, but the shale gas is mainly derived from phytoplankton, acritarch and other hydrogen-rich organic matter, as well as the pyrolysis of liquid hydrocarbons produced by this kind of organic matter. (2) Organic pores, as principal reservoir space for shale gas, exist in hydrogen-rich organic matter and solid bitumen. The graptolites and plenty of other organic matter stacking distribution in lamina provide more reservoir space for shale gas, and effective pathways of connected pores for fluid flow. (3) Shale gas in Fuling region is in supercritical state and dominated by free gas; the match of formation time of closed shale gas system and gas-generation peak, as well as slight alteration degree of sealing conditions in the later stage, are key factors controlling the retention and accumulation of shale gas in the regions with high thermal maturity and complex structural areas; adsorption, capillary sealing and slow diffusion of shale are the main microscopic mechanisms for the retention and accumulation of shale gas. It thus can be seen that the generation and accumulation of marine shale gas with high thermal maturity in complex structure areas is controlled jointly by anoxic depositional environment, excellent hydrocarbon rock quality, superior reservoir space and favorable sealing conditions.
  • OIL AND GAS FIELD DEVELOPMENT
    LI Yang1, WU Shenghe2, HOU Jiagen2, LIU Jianmin3
    Petroleum Exploration and Development. 2017, 44(4): 569-579. https://doi.org/10.11698/PED.2017.04.10
    This paper deals with the main scientific problems, academic connotation, progress and prospects of reservoir development geology. The reservoir development geology involves the key scientific problems of reservoir connectivity, flow ability, and changeability through time. Its research focus on the forming mechanism and distribution model of geological factors controlling the reservoir development, the control mechanism of geological factors to oil and gas production, the rule of reservoir dynamic evolution during development, and the reservoir characterization and modeling technology. Important progress has been made on theory and technology of reservoir development geology in high water-cut reservoirs, low permeability and tight shale reservoirs, fracture-cavity reservoirs, which makes the reservoir development geology grow as an independent academic subject already. With the development expansion in areas of deep-strata, deep-water, and unconventional hydrocarbon reservoirs, and the increasing difficulties of high water-cut reservoir development, the theory and technology of reservoir development geology remain to be developed in order to support efficient and economic development of hydrocarbon fields with a sustainable growth.
  • OIL AND GAS FIELD DEVELOPMENT
    LI Xizhe, GUO Zhenhua, WAN Yujin, LIU Xiaohua, ZHANG Manlang, XIE Wuren, SU Yunhe, HU Yong, FENG Jianwei, YANG Bingxiu, MA Shiyu, GAO Shusheng
    Petroleum Exploration and Development. 2017, 44(3): 398-406. https://doi.org/10.11698/PED.2017.03.09
    Seismic, drilling, logging and production performance data were analyzed to study the key geological factors such as reservoir properties and gas/water distribution, which influence the development of the Lower Cambrian Longwangmiao reservoirs in the Moxi block, Anyue gas field, Sichuan Basin, and the development strategies are established. The results indicate that: (1) Four stages of grain shoals developed longitudinally and two main shoals with one trench formed laterally in the development area; (2) Three types of reservoirs are identified, which are reservoir with millimeter sized dissolved vugs, reservoir with solution pores, and reservoir with inter-particle/inter-crystal pores; (3) Low matrix porosity but mid-to-high permeability affected by developed high-dip fractures; and (4) Three gas/water contacts (GWC) can be defined and step down from west to east, with a unique gas/water contact of -4 385 m in the target developing area. Based on geologic characterization, reservoir simulation and case study of similar gas reservoirs, the development strategies are made: to select the main grain shoal area as the prior production area; to locate wells on the structural high to delay edge water breakthrough and prolong stable production; to drill horizontal wells enhancing single well deliverability; to keep reasonable production of wells for improving the production effect.
  • PETROLEUM EXPLORATION
    ZHANG Dongxiao, CHEN Yuntian, MENG Jin
    Petroleum Exploration and Development. 2018, 45(4): 598-607. https://doi.org/10.11698/PED.2018.04.06
    To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network (FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory (LSTM) network, which is a kind of Recurrent Neural Network (RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation.
  • PETROLEUM EXPLORATION
    SUN Longde, ZOU Caineng, JIA Ailin, WEI Yunsheng, ZHU Rukai, WU Songtao, GUO Zhi
    Petroleum Exploration and Development. 2019, 46(6): 1015-1026. https://doi.org/10.11698/PED.2019.06.01
    Through reviewing the development history of tight oil and gas in China, summarizing theoretical understandings in exploration and development, and comparing the geological conditions and development technologies objectively in China and the United States, the progress and stage of tight oil and gas exploration and development in China have been clarified, and the future development orientation of theory and technology, process methods and development policy for tight oil and gas in China have been envisaged. In nearly a decade, relying on the exploration and development practice, science and technology research and management innovation, huge breakthroughs have been made in the exploration and development of tight oil and gas in China. The laws of formation, distribution and accumulation of tight oil and gas have been researched, the development theories such as “multi-stage pressure drop” and “man-made reservoirs” have been established, and several technology series, including enrichment regions selection, well pattern deployment, single well production and recovery factor enhancement, and low cost development, have been innovated and integrated. All those promote the rapid rise of both reserves and production of tight oil and gas. However, limited by the sedimentary environment and tectonic background, compared with North America, China’s tight oil and gas reservoirs are worse in continuity, more difficult to develop and poorer in economic efficiency. Moreover, there are still some gaps in reservoir identification accuracy and fracturing technology between China and North America. In the future, boosting the rapid development of tight oil and gas, Chinese oil and gas companies should further improve the resource evaluation method, tackle key technologies such as high-precision 3D seismic interpretation, man-made reservoir, and intelligent engineering, innovate theories and technologies to enhance single well production and recovery rate, and actively endeavor to get the finance and tax subsidy on tight oil and gas.
  • PETROLEUM EXPLORATION
    PENG Hao, YIN Cheng, HE Qinglin, XIA Guoyong, LIU Yong, MA Tinghu, CHEN Kang, LIU Ran, SU Wang
    Petroleum Exploration and Development. 2022, 49(1): 56-67. https://doi.org/10.11698/PED.2022.01.05
    By examining field outcrops, drilling cores and seismic data, it is concluded that the Middle and Late Permian “Emeishan basalts” in Western Sichuan Basin were developed in two large eruption cycles, and the two sets of igneous rocks are in unconformable contact. The lower cycle is dominated by overflow volcanic rocks; while the upper cycle made up of pyroclastic flow volcanic breccia and pyroclastic lava is typical explosive facies accumulation. With high-quality micro-dissolution pores and ultra-fine dissolution pores, the upper cycle is a set of high-quality porous reservoir. Based on strong heterogeneity and great differences of pyroclastic flow subfacies from surrounding rocks in lithology and physical properties, the volcanic facies and volcanic edifices in Western Sichuan were effectively predicted and characterized by using seismic attribute analysis method and instantaneous amplitude and instantaneous frequency coherence analysis. The pyroclastic flow volcanic rocks are widely distributed in the Jianyang area. Centering around wells YT1, TF2 and TF8, the volcanic rocks in Jianyang area had 3 edifice groups and an area of about 500 km2, which is the most favorable area for oil and gas exploration in volcanic rocks.
  • 国际交流与合作
    Jack Allan and S Qing Sun
    . 2003, 30(6): 744-0.
    One hundred fractured reservoirs from around the world were evaluated to determine how ultimate recovery was affected by inherent reservoir and fluid properties, such as porosity, permeability, viscosity, mobility ratio, Sw, wet ability, fracture distribution, and drive mechanism vs. the choice of reservoir management strategy, e.g., optimization of production rate and type of EOR technique. Fractured oil reservoirs were divided into four groups. Type Ⅰ reservoirs have little matrix porosity and permeability. Fractures provide both storage capacity and fluid-flow pathways. Type Ⅱ reservoirs have low matrix porosity and permeability. Matrix provides some storage capacity and fractures provide the fluid-flow pathways. Type Ⅲ (microporous) reservoirs have high matrix porosity and low matrix permeability. Matrix provides the storage capacity and fractures provide the fluid-flow pathways. Type Ⅳ (macroporous) reservoirs have high matrix porosity and permeability. Matrix provides both storage capacity and fluid-flow pathways, while fractures merely enhance permeability. Results of studying 26 Type Ⅱ and 20 Type Ⅲ reservoirs demonstrate that recovery factor is controlled by different factors in these two reservoir types. Recovery factor in Type Ⅱ reservoirs is sensitive to aquifer-drive strength and optimization of flow rate. Type Ⅱ reservoirs are easily damaged by excessive production rates, but when managed properly, some achieve good recovery without the need for secondary or enhanced recovery programs. Recovery factor in Type Ⅲ reservoirs is affected by inherent rock and fluid properties, particularly matrix permeability, API gravity, wet ability, and fracture intensity. The choice of proper EOR technique is essential for optimum exploitation. No Type Ⅲ reservoir is produced to final depletion without the aid of some type of secondary or EOR technique. Recognition of the differences between Type Ⅱ and Type Ⅲ fractured reservoirs should lead to better choices of exploitation strategy.
  • XU Yun, LEI Qun, CHEN Ming, WU Qi, YANG Nengyu, WENG Dingwei, LI Deqi, JIANG Hao
    Petroleum Exploration and Development. 2018, 45(5): 874-887. https://doi.org/10.11698/PED.2018.05.14
    Based on the theoretical study and field application of volume stimulation in horizontal wells over the past 10 years, the core connotation of volume stimulation was further interpreted. The implementation methods, design models and key issues were analyzed, and the future development direction was put forward. The research shows that the multi-cluster limited entry technique can achieve homogenous growth of multiple fractures. The hybrid stimulation of “breaking rock by gel stimulation + carrying proppant by slick water” plus small-particle proppant can reduce the fracture complexity near the well bore and increase stimulated reservoir volume (SRV) in the far-field. The requirement of fracture conductivity in unconventional formations can be met by shear-sustained fractures and proppant-transporting slick water. The optimum well spacing between a child well and a parent well should be determined by the stimulation modes, injection volume and pressure drawdown. Reconstructing seepage field, stress field and stimulation targets is crucial for improving the stimulation results in a horizontal well. Reducing cluster spacing and well spacing is the basis for establishing development modes of fracture-controlled reserves. Fracturing-design decision system based on “spatial-mode stimulation” and geology-engineering integration is an important research direction for volume stimulation techniques.
  • COMPREHENSIVE RESEARCH
    MA Xinhua, XIE Jun
    Petroleum Exploration and Development. 2018, 45(1): 161-169. https://doi.org/10.11698/PED.2018.01.18
    The Ordovician Wufeng Formation-Silurian Longmaxi Formation organic-rich shales distributed widely and stably in Southern Sichuan Basin were investigated based on drilling data. Geological evaluation of wells show that the shale reservoirs have good properties in the Yibin, Weiyuan, Zigong, Changning, Luzhou, Dazu areas, with key parameters such as TOC, porosity, gas content similar to the core shale gas production zones. Moreover, these areas are stable in structure, good in preservation conditions and highly certain in resources. The shale reservoirs have a burial depth of 4 500 m or shallow, a total area of over 2×104 km2 and estimated resource of over 10×1012 m3, so they are the most resource-rich and practical areas for shale gas exploitation in China. Through construction of the Changning-Weiyuan national demonstration region, the production and EUR of shale gas wells increased significantly, the cost of shale gas wells decreased remarkable, resulting in economic benefit better than expected. Moreover, the localized exploration and development technologies and methods are effective and repeatable, so it is the right time for accelerating shale gas exploitation. Based on the production decline pattern of horizontal wells at present and wells to be drilled in the near future, at the end of the 13th Five Year Plan, the production of shale gas in southern Sichuan Basin is expected to reach 10 billion cubic meters per year. The resources are sufficient for a stable production period at 30 billion cubic meters per year, which will make the South Sichuan basin become the largest production base of shale gas in China.
  • OIL AND GAS FIELD DEVELOPMENT
    LI Xizhe, GUO Zhenhua, HU Yong, LUO Ruilan, SU Yunhe, SUN Hedong, LIU Xiaohua, WAN Yujin, ZHANG Yongzhong, LI Lei
    Petroleum Exploration and Development. 2018, 45(1): 111-118. https://doi.org/10.11698/PED.2018.01.11
    Through analyzing the development of large ultra-deep structural gas fields in China, strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production performance. According to matrix properties, fracture development degree and configuration between matrix and fractures, the reservoirs are classified into three types: single porosity single permeability system, dual porosity dual permeability system, and dual porosity single permeability system. These three types of gas reservoirs show remarkable differences in different scales of permeability, the ratio of dynamic reserves to volumetric reserves and water invasion risk. It is pointed out that the key factors affecting development efficiency of these gas fields are determination of production scale and rapid identification of water invasion. Figuring out the characteristics of the gas fields and working out pertinent technical policies are the keys to achieve efficient development. The specific strategies include reinforcing early production appraisal before full scale production by deploying high precision development seismic survey, deploying development appraisal wells in batches and scale production test to get a clear understanding on the structure, reservoir type, distribution pattern of gas and water, and recoverable reserves, controlling production construction pace to ensure enough evaluation time and accurate evaluation results in the early stage, in line with the development program made according to the recoverable reserves, working out proper development strategies, optimizing pattern and proration of wells based on water invasion risk and gas supply capacity of matrix, and reinforcing research and development of key technologies.
  • OIL AND GAS FIELD DEVELOPMENT
    FANG Wenchao, JIANG Hanqiao, LI Junjian, WANG Qing, KILLOUGH John, LI Linkai, PENG Yongcan, YANG Hanxu
    Petroleum Exploration and Development. 2017, 44(3): 415-421. https://doi.org/10.11698/PED.2017.03.11
    A discrete fracture model for multi-scale flow in large-scale fractured tight oil reservoirs is proposed considering the compressibility of reservoir rock and fluid, and the non-linear flow in the tight matrix. Validation of the model is performed, followed by the field application of the model. The two-point flux-approximation scheme is adopted in the model to calculate conductivity, and small grids at the fracture intersections are eliminated by the “star-delta” transformation method to improve the computational stability. The fully implicit discretization scheme is performed on the temporal domain. Automatic differentiation technique which can improve model establishment efficiency and computational accuracy is applied in the model to solve the numerical model. The model is validated with the simulation results of Eclipse and the historical production data of a long fractured horizontal well in a tight oil reservoir in Xinjiang oilfield. Simulation results of a field-scale reservoir show that the model proposed can simulate reservoirs with large-scale complex fracture systems; well productivity is positively correlated with the scale of the stimulated reservoir volume, and the difference in planar fracture density and fracture connectivity are proved to be the key factors that lead to the heterogeneous distribution of remaining oil in tight oil reservoirs.
  • 石油工程
    Zhang Dongxiao and Yang Tingyun
    . 2015, 42(6): 801-807.
    Through comprehensive investigation of the environmental issues in shale gas development in the US, the environmental impacts of hydraulic fracturing in shale gas development are summarized to provide reference for the shale gas development and management in China. The environmental risks of large-scale commercial shale gas development in the United States include water consumption, water contamination, seismic inducement and air pollution. Compared to conventional oil and gas production and other energy producing industries, shale gas development is not exactly “high-water-consuming” in terms of water consuming intensity. Its water consumption, accounting for a small proportion of the total regional water consumption, will not add much more stress on water supply. In terms of water pollution, hydraulic fracturing is unlikely to cause fractures to directly connect reservoir to the shallow aquifer, the known contamination cases are most likely related to faulty well completion, therefore well integrity is the key to the prevention of contamination; the flow-back fluids in large scale shale gas development have the characteristics of large quantity, many kinds of pollutants and complex composition, thus improper treatment would lead to serious contamination, and continuous monitoring and assessment of the pollutants are necessary. Existing evidence shows that hydraulic fracturing is unlikely to trigger destructive earthquakes. Greenhouse gas emissions in the life cycle of shale gas wells were estimated differently, but no doubt more effective measures should be taken to minimize leakage. The research priorities include contamination monitoring program design, detection indicators, moving pattern of hydraulic fracturing fluid and formation fluid, the effects of shale gas development on high salinity formation water and methane migration, and treatment and re-use of flow-back fluid.
  • PETROLEUM EXPLORATION
    ZHAO Wenzhi, HU Suyun, WANG Zecheng, ZHANG Shuichang, WANG Tongshan
    Petroleum Exploration and Development. 2018, 45(1): 1-13. https://doi.org/10.11698/PED.2018.01.01
    The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian. Based on the reconstruction of tectonic setting and the analysis of major geological events in Mesoproterozoic-Neoproterozoic, the petroleum geological conditions of Proterozoic to Cambrian is discussed in this paper from three aspects, i.e. source rocks, reservoir conditions, and the type and efficiency of play. It is found that lower organisms boomed in the interglacial epoch from Mesoproterozoic-Neoproterozoic to Eopaleozoic when the organic matters concentrated and high quality source rocks formed. Sinian-Cambrian microbial rock and grain-stone banks overlapped with multiple-period constructive digenesis may form large-scale reservoir rocks. However, because of the anoxic event and weak weathering effect in Eopaleozoic-Mesoproterozoic, the reservoirs are generally poor in quality, and only the reservoirs that suffered weathering and leaching may have the opportunity to form dissolution-reconstructed reservoirs. There are large rifts formed during Mesoproterozoic-Neoproterozoic in Huabei Craton, Yangtze Craton, and Tarim Craton in China, and definitely source rocks in the rifts, while whether there are favorite source-reservoir plays depends on circumstance. The existence of Sinian-Cambrian effective play has been proved in Upper Yangtze area. The effectiveness of source-reservoir plays in Huabei area depends on two factors: (1) the effectiveness of secondary play formed by Proterozoic source rock and Paleozoic, Mesozoic, Cenozoic reservoir rocks; (2) the matching between reservoirs formed by reconstruction from Mesoproterozoic- Neoproterozoic to Eopaleozoic and the inner hydrocarbon kitchens with late hydrocarbon generation. As for Tarim Basin, the time of Proterozoic and the original basin should be analyzed before the evaluation of the effective play. To sum up, Proterozoic to Cambrian in the three craton basins in China is a potential exploration formation, which deserves further investigation and research.
  • Orginal Article
    ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, PAN Liyin, HU Anping, ZHANG Jie
    Petroleum Exploration and Development. 2018, 45(6): 923-935. https://doi.org/10.11698/PED.2018.06.01
    To find out the origin of dolomite, the precipitation of primary dolomite, and the formation of pores in dolomite, petrologic and geochemical characteristics of typical samples from Sichuan and Tarim Basin were analyzed based on the previous understandings, and three aspects of results were achieved. (1) A classification of dolomite origins based on petrologic features, forming environment and time sequence was proposed, which shows clear boundaries of diagenetic and characteristic realms and evolved clues between different types of dolomite. (2) Petrographic and geochemical identification marks for different types of dolomite were presented, revealing that the orderly geochemical variation of different types of dolomite is the response to the change of forming environment of dolomite during continuous time sequence. (3) The contribution of dolomitization to the formation of porosity was re-evaluated, revealing that the porosity in dolomite was mostly attributed to the primary pores and supergene dissolution and burial dissolution, and early dolomitization was conducive to the preservation of primary pores. These understandings are of great theoretical significance for identifying the origins and types of dolomite, and can guide the prediction of dolomite reservoirs.
  • PETROLEUM EXPLORATION
    MA Yongsheng, CAI Xunyu, ZHAO Peirong
    Petroleum Exploration and Development. 2018, 45(4): 561-574. https://doi.org/10.11698/PED.2018.04.03
    Through detailed analyses of the distribution characteristics of organic-rich shale, appearance features of high-quality shale, microscopic characteristics of shale reservoir rocks, fracturabilities, and the relationship between preservation conditions and shale gas enrichment in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin, theoretical understandings and specific suggestions with respect to the exploration and development of shale gas in China are summarized and proposed respectively. Successful experiences in the exploration and development of shale gas of the Wufeng Formation-Longmaxi Formation in the Sichuan Basin can be summarized into the following aspects: depositional environment and depositional process control the distribution of organic-rich shale; high quality shale in “sweet spot segments” are commonly characterized by high content of organic carbon, high brittleness, high porosity and gas content; organic pores are important storage space for the enrichment of shale gas; preservation conditions are the key factor for the geological evaluation of shale gas in structurally complex regions; shale gas can be considered as “artificial gas reservoirs” and the fracturability assessment is essential for high-production; nanoscale storage space and the mode of occurrence control the special seepage characteristics of shale gas. The following suggestions are proposed for the development of China’s shale gas industry: (1) focus more on fundamental research to achieve new breakthrough in the geological theory of shale gas; (2) emphasize exploration practices to have all-round discoveries in multiple strata; (3) study the regularities of development and production to establish new models of shale gas development; (4) think creatively to invent new technologies to tackle key problems; (5) explore the management innovation to create new mechanisms in shale gas development.
  • PETROLEUM ENGINEERING
    LEI Qun, XU Yun, CAI Bo, GUAN Baoshan, WANG Xin, BI Guoqiang, LI Hui, LI Shuai, DING Bin, FU Haifeng, TONG Zheng, LI Tao, ZHANG Haoyu
    Petroleum Exploration and Development. 2022, 49(1): 166-172. https://doi.org/10.11698/PED.2022.01.15
    By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the "13th Five-Year Plan", this article elaborates new horizontal well fracturing features in 3D development of stacked shale reservoirs, small well spacing and dense well pattern, horizontal well re-fracturing, fracturing parameters optimization and cost control. In light of requirements on horizontal well fracturing technology in China, we have summarized the technological progress in simulation of multi-fracture propagation, horizontal well frac-design, electric-drive fracturing equipment, soluble tools and low-cost downhole materials and factory-like operation. On this basis, combined with the demand analysis of horizontal well fracturing technology in the "14th Five-Year Plan" for unconventional shale oil and gas, we suggest strengthening the research and development in the following 7 aspects: (1) geology-engineering integration; (2) basic theory and design optimization of fracturing for shale oil and gas reservoirs; (3) development of high-power electric-drive fracturing equipment; (4) fracturing tool and supporting equipment for long horizontal section; (5) horizontal well flexible-sidetracking drilling technology for tapping remaining oil; (6) post-frac workover technology for long horizontal well; (7) intelligent fracturing technology.
  • PETROLEUM EXPLORATION
    GUO Xusheng, HU Dongfeng, LI Yuping, DUAN Jinbao, JI Chunhui, DUAN Hua
    Petroleum Exploration and Development. 2018, 45(1): 14-26. https://doi.org/10.11698/PED.2018.01.02
    To solve the difficulties in exploration and development in Yuanba Great Ultra-deep Gas Feild in Sichuan Basin, SW China, the article studies the mechanism of development of quality reef reservoirs gas accumulation and innovates techniques for ultra-deep seismic exploration, drilling, completion and testing. Through the dynamic depositional evolution process of homoclinal ramp-fringed platform and reconstruction of regional depositional framework in the Permian, it is found that the reservoirs in the Changxing Formation of Yuanba area, Sichuan Basin are developed in a pattern of “early shoal and late reef, multiple stage stacking, in rows and belts”, dissolution in early exposure stage and dolomitization during shallow burial give rise to the pores in matrix, overpressure caused by cracking of liquid hydrocarbon during deep burial induces fractures, and coupling of pores and fractures controls the development of ultra-deep high quality reservoirs. From correlation of oil and source rock, it is concluded that the Wujiaping Formation and Dalong Formation of deep-water continental shelf are the major source rocks in the Permian of northern Sichuan Basin. The hydrocarbon accumulation mode in ultra-deep formations of low-deformation zones is characterized by “three-micro migration, near-source enrichment, and persistent preservation”. Through seismic inversion using the pore structure parameters of pore-fracture dual structure model, the high production gas enrichment area in Yuanba gas field is 98.5 km2. Moreover, special well structure and unconventional well structure were used to deal with multiple pressure systems and sealing of complex formations. A kind of integral, high pressure resistant FF-level gas wellhead and ground safety linkage device was developed to accomplish safe and environmentally friendly gas production.
  • PETROLEUM EXPLORATION
    GUO Xusheng, HU Dongfeng, LI Yuping, WEI Zhihong, WEI Xiangfeng, LIU Zhujiang
    Petroleum Exploration and Development. 2017, 44(4): 481-491. https://doi.org/10.11698/PED.2017.04.01
    Based on the understandings on enrichment rules of marine shale gas in southern China and data obtained from exploration and development in Fuling shale gas field, this article discusses the key controlling factors on shale gas enrichment and their relationships, it also discusses further the theory of Two-Factor Enrichment of marine shale gas in southern China. The bases for shale gas enrichment are shale gas generation and accumulation, the shale gas reservoirs of deep-water shelf are characterized by high TOC, high porosity, high gas content and high siliceous content, with high hydrocarbon-generation intensity, they are rich in organic pores, favorable for reformation, so they are the base for large scale hydrocarbon accumulation. Preservation conditions are vital to the formation and enrichment of shale gas reservoir, good top and base layers can effectively prevent hydrocarbon from escaping vertically at the beginning of hydrocarbon generation. Shale gas preservation conditions depend on the intensity and duration of tectonic movements, good preservation conditions are key geological factors for shale gas accumulation, shale reservoirs have high gas content, high porosity and high pressure and are likely to form high yield area of shale gas.
  • COMPREHENSIVE RESEARCH
    SONG Yan1, 2, LI Zhuo1, JIANG Zhenxue1, LUO Qun1, LIU Dongdong1, GAO Zhiye1
    Petroleum Exploration and Development. 2017, 44(4): 638-648. https://doi.org/10.11698/PED.2017.04.18
    The progress in pore structure characterization, hydrocarbon occurrence state, mechanism of oil and gas accumulation, main controlling factors and high production model of unconventional oil and gas is reviewed. The unconventional oil and gas geological research developed from observation of the nanopores to quantitative full scale and 3D pore structure characterization, from macroscopic occurrence state study to microscopic occurrence state evolution discussion, from differential pressure drive and preferential channel migration to staged accumulation and wettability preferential migration, from accumulation controlled by source to accumulation jointly controlled by source-reservoir assemblage and preservation conditions, from accumulation model to enrichment and high production model, revealing the research progresses and future trends of unconventional oil and gas geology. Challenges are presented in unconventional oil and gas geological theory, enrichment conditions and recoverable resources potential of deeply buried unconventional oil and gas, combination of unconventional oil and gas geological research and engineering technique, and basic geologic research for joint mining of different unconventional oil and gas resources.
  • 油气勘探
    Zou Caineng; Yang Zhi; Cui Jingwei; Zhu Rukai; Hou Lianhua; Tao Shizhen; Yuan Xuanjun; Wu Songtao; Lin Senhu; Wang Lan; Bai Bin and Yao Jingli
    . 2013, 40(1): 2103-0.
    As an important type of “conventional–unconventional orderly accumulation”, shale oil is mature oil stored in organic-rich shales with nano-scale pores. This paper analyzes and summarizes elementary petroleum geological issues concerning continental shale oil in China, including sedimentary environment, reservoir space, geochemical features and accumulation mechanism. Mainly deposited in semi-deep to deep lake environment, shale rich in organic matter usually coexists with other lithologies in laminated texture, and micron to nano-scale pores and microfractures serve as primary reservoir space. Favorable shale mainly has typeⅠand ⅡA kerogens with a Ro of 0.7% –2.0%, TOC more than 2.0%, and effective thickness of over 10 m. The evolution of shale pores and retained accumulation pattern of shale oil are figured out. Reservoir space, brittleness, viscosity, pressure, retained quantity are key parameters in the “core” area evaluation of shale oil. Continuously accumulated in the center of lake basins, continental shale oil resources in China are about 30×108–60×108 t by preliminary prediction. Volume fracturing in horizontal wells, reformation of natural fractures, and man-made reservoir by injecting coarse grains are some of the key technologies for shale oil production. A three step development road for shale oil is put forward, speeding up study on “shale oil prospective area”, stepping up selection of “core areas”, and expanding “test areas”. By learning from marine shale breakthroughs in North America, continental shale oil industrialization is likely to kick off in China.
  • OIL AND GAS FIELD DEVELOPMENT
    MA Xinhua, LI Xizhe, LIANG Feng, WAN Yujin, SHI Qiang, WANG Yonghui, ZHANG Xiaowei, CHE Mingguang, GUO Wei, GUO Wei
    Petroleum Exploration and Development. 2020, 47(3): 555-563. https://doi.org/10.11698/PED.2020.03.11
    Weiyuan shale gas play is characterized by thin high-quality reservoir thickness, big horizontal stress difference, and big productivity differences between wells. Based on integrated evaluation of shale gas reservoir geology and well logging interpretation of more than 20 appraisal wells, a correlation was built between the single well test production rate and the high-quality reservoir length drilled in the horizontal wells, high-quality reservoir thickness and the stimulation treatment parameters in over 100 horizontal wells, the dominating factors on horizontal well productivity were found out, and optimized development strategies were proposed. The results show that the deployed reserves of high-quality reservoir are the dominating factors on horizontal well productivity. In other words, the shale gas well productivity is controlled by the thickness of the high-quality reservoir, the high-quality reservoir drilling length and the effectiveness of stimulation. Based on the above understanding, the development strategies in Weiyuan shale gas play are optimized as follows: (1) The target of horizontal wells is located in the middle and lower parts of Longyi 11 (Wei202 area) and Longyi 11 (Wei204 area). (2) Producing wells are drilled in priority in the surrounding areas of Weiyuan county with thick high-quality reservoir. (3) A medium to high intensity stimulation is adopted. After the implementation of these strategies, both the production rate and the estimated ultimate recovery (EUR) of individual shale gas wells have increased substantially.
  • Zhu Xiaomin1; Zhong Dakang1; Yuan Xuanjun2; Zhang Huiliang3; Zhu Shifa1; Sun Haitao1; Gao Zhiyong2; Xian Benzhong1
    Petroleum Exploration and Development. 2016, 43(5): 820-829.
    This paper gives a contrastive analysis of the main progress made in petroliferous basins sedimentary geology domestically and internationally, and discusses the main problems and their solutions in the development of petroliferous basins sedimentology in China, including coarse-grained depositional sysytem, shallow-water deltic depositional system, beach bar depositional system, deep-water gravity flows, fine-grained depositional sysytem, carbonate reefs, mixosedimentite, microbialite, seismic sedimentology and sedimentary physical simulation. It also reveals the developing gap of Chinese sedimentology in the areas of microbialite and sedimentary simulation, etc. and analyzes the recovery of sedimentary features and paleogeography pattern of prototype basins, multi-scale paleogeographic recovery during major tectonic movements, the different explanation of new sedimentology theories in the deep-buried new sandbodies and old sandbodies development regularities. The paper details the difficulties when it comes to the typical depositional systems combination and the setup of sedimentary models in China. Therefore, the developing tendency is described of sedimentology theories like source to sink, sedimentary dynamics as well as regional sedimentology in China, seismic sedimentology, and studying methods and technologies in sedimentary simulation.