Fault structural characteristics of Wangfu Fault Depression and its effect on coal-rock gas enrichment, Songliao Basin, NE China

  • SUN Yonghe ,
  • LIU Yumin ,
  • TIAN Wenguang
Expand
  • 1. School of Petroleum Engineering, Chongqing University of Science & Technology, Chongqing 401331, China;
    2. School of Electronic and Electrical Engineering, Chongqing University of Science & Technology, Chongqing 401331, China;
    3. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Received date: 2024-12-11

  Revised date: 2025-03-01

  Online published: 2025-05-13

Abstract

Taking the Wangfu Rift in the Songliao Basin as an example, on the basis of seismic interpretation and drilling data analysis, the distribution of the basement faults was clarified, the fault activity periods of the coal-bearing formations were determined, and the fault systems were divided. Combined with the coal seam thickness and actual gas indication in logging, the controls of fault systems in the rift basin on the spatial distribution of coal and the occurrence of coal-rock gas were identified. The results show that the Wangfu Rift is an asymmetrical graben formed under the control of basement reactivated strike-slip T-rupture, and contains coal-bearing formations and five sub-types of fault systems under three types. The horizontal extension strength, vertical activity strength and tectono-sedimentary filling difference of basement faults control vertical stratigraphic sequences, accumulation intensity, and accumulation frequency of coal seam in rift basin. The structural transfer zone formed during the segmented reactivation and growth of the basement faults control the injection location of steep slope exogenous clasts. The filling effect induced by igneous intrusion accelerates the sediment filling process in the rift lacustrine area. The structural transfer zone and igneous intrusion together determine the preferential accumulation location of coal seams in the plane. The faults reactivated at the basement and newly formed during the rifting phase serve as pathways connecting to the gas source, affecting the enrichment degree of coal-rock gas. The vertical sealing of the faults was evaluated by using shale smear factor (SSF), and the evaluation criteria was established. It is indicated that the SSF is below 1.1 in major coal areas, indicating favorable preservation conditions for coal-rock gas. Based on the influence factors such as fault activity, segmentation and sealing, the coal-rock gas accumulation model of rift basin was established.

Cite this article

SUN Yonghe , LIU Yumin , TIAN Wenguang . Fault structural characteristics of Wangfu Fault Depression and its effect on coal-rock gas enrichment, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 0 : 20250606 -20250606 . DOI: 10.11698/PED.20240766

References

[1] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399.
ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al.Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399.
[2] 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682.
XU Fengyin, HOU Wei, XIONG Xianyue, et al.The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682.
[3] 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报, 2021, 46(8): 2387-2399.
QIN Yong.Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society, 2021, 46(8): 2387-2399.
[4] 李国欣, 贾承造, 赵群, 等. 煤岩气成藏机理与煤系全油气系统[J]. 石油勘探与开发, 2025, 52(1): 29-43.
LI Guoxin, JIA Chengzao, ZHAO Qun, et al.Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures[J]. Petroleum Exploration and Development, 2025, 52(1): 29-43.
[5] 张雷, 边利恒, 侯伟, 等. 深部煤储层孔隙结构特征及其勘探意义: 以鄂尔多斯盆地东缘大宁—吉县区块为例[J]. 石油学报, 2023, 44(11): 1867-1878.
ZHANG Lei, BIAN Liheng, HOU Wei, et al.Pore structure characteristics and exploration significance of deep coal reservoirs: A case study of Daning-Jixian block in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(11): 1867-1878.
[6] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811.
QIN Yong.Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1791-1811.
[7] 康永尚, 闫霞, 皇甫玉慧, 等. 深部超饱和煤层气藏概念及主要特点[J]. 石油学报, 2023, 44(11): 1781-1790.
KANG Yongshang, YAN Xia, HUANGFU Yuhui, et al.Concept and main characteristics of deep oversaturated coalbed methane reservoir[J]. Acta Petrolei Sinica, 2023, 44(11): 1781-1790.
[8] 陈世达, 汤达祯, 侯伟, 等. 深部煤层气地质条件特殊性与储层工程响应[J]. 石油学报, 2023, 44(11): 1993-2006.
CHEN Shida, TANG Dazhen, HOU Wei, et al.Geological particularity and reservoir engineering response of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11): 1993-2006.
[9] 周德华, 陈刚, 陈贞龙, 等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业, 2022, 42(6): 43-51.
ZHOU Dehua, CHEN Gang, CHEN Zhenlong, et al.Exploration and development progress, key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry, 2022, 42(6): 43-51.
[10] 李国欣, 贾承造, 赵群, 等. 煤岩气成藏机理与煤系全油气系统[J]. 石油勘探与开发, 2025, 52(01): 29-43.
LI Guoxin, JIA Chengzao, ZHAO Qun, et al.Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures[J]. Petroleum Exploration and Development, 2025, 52(1): 29-43.
[11] 赵喆, 杨威, 赵振宇, 等. 中国煤成气地质理论研究进展与重点勘探领域[J]. 石油勘探与开发, 2024, 51(06): 1240-1253.
ZHAO Zhe, YANG Wei, ZHAO Zhenyu, et al.Research progresses in geological theory and key exploration areas of coal-formed gas in China[J]. Petroleum Exploration and Development, 2024, 51(6): 1240-1253.
[12] 吉宏泰, 孙建国, 孟令伟, 等. 内蒙古地区聚煤规律、赋煤构造格局的基本特征[J]. 煤炭学报, 2020, 45(增刊2): 965-975.
JI Hongtai, SUN Jianguo, MENG Lingwei, et al.Basic characteristics of coal accumulation law and occurrence tectonic pattern in Inner Mongolia[J]. Journal of China Coal Society, 2020, 45(S2): 965-975.
[13] 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3): 433-442.
ZOU Caineng, YANG Zhi, HUANG Shipeng, et al.Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 2019, 46(3): 433-442.
[14] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130.
XU Fengyin, YAN Xia, LI Shuguang, et al.Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130.
[15] 桑树勋, 李瑞明, 刘世奇, 等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报, 2024, 49(1): 563-585.
SANG Shuxun, LI Ruiming, LIU Shiqi, et al.Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society, 2024, 49(1): 563-585.
[16] 汤达祯, 杨曙光, 唐淑玲, 等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报, 2021, 46(8): 2412-2425.
TANG Dazhen, YANG Shuguang, TANG Shuling, et al.Advance on exploration-development and geological research of coalbed methane in the Junggar Basin[J]. Journal of China Coal Society, 2021, 46(8): 2412-2425.
[17] 沈华, 杨亮, 韩昊天, 等. 松辽盆地南部油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2104-2121.
SHEN Hua, YANG Liang, HAN Haotian, et al.New fields, new types and resource potentials of oil-gas exploration in southern Songliao Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2104-2121.
[18] 孙粉锦, 李五忠, 孙钦平, 等. 二连盆地吉尔嘎朗图凹陷低煤阶煤层气勘探[J]. 石油学报, 2017, 38(5): 485-492.
SUN Fenjin, LI Wuzhong, SUN Qinping, et al.Low-rank coalbed methane exploration in Jiergalangtu Sag, Erlian Basin[J]. Acta Petrolei Sinica, 2017, 38(5): 485-492.
[19] 孙斌, 邵龙义, 赵庆波, 等. 海拉尔盆地煤层气成藏机理及勘探方向[J]. 天然气工业, 2007, 27(7): 12-15.
SUN Bin, SHAO Longyi, ZHAO Qingbo, et al.Reservoiring mechanism of coalbed methane and exploration direction in Hailaer Basin[J]. Natural Gas Industry, 2007, 27(7): 12-15.
[20] 沈霞, 公海涛, 邵明礼, 等. 松辽盆地南部王府断陷深部煤层气地质特征及有利区评价[J]. 煤田地质与勘探, 2024, 52(2): 113-121.
SHEN Xia, GONG Haitao, SHAO Mingli, et al.Geological characteristics and favorable area evaluation of deep coalbed methane in Wangfu fault depression, southern Songliao Basin[J]. Coal Geology & Exploration, 2024, 52(2): 113-121.
[21] 邵陶阳, 章凤奇, 杨树锋, 等. 黑龙江东部三江盆地绥滨坳陷构造演化与煤层气勘探评价[J]. 高校地质学报, 2017, 23(2): 259-267.
SHAO Taoyang, ZHANG Fengqi, YANG Shufeng, et al.Structural evolution and evaluation of coalbed methane exploration of the Suibin Depression, Sanjiang Basin, eastern Heilongjiang Province, NE China[J]. Geological Journal of China Universities, 2017, 23(2): 259-267.
[22] 马文娟. 海拉尔盆地呼和湖凹陷大二段低煤阶煤层气成藏条件及有利勘探区预测[J]. 大庆石油地质与开发, 2022, 41(1): 33-40.
MA Wenjuan.Accumulation conditions and favorable exploration areas prediction of lowrank coalbed methane in Member K1d2 of Huhehu Sag in Hailar Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(1): 33-40.
[23] 桑树勋, 郑司建, 刘世奇, 等. 煤系气及深部煤层气高效勘探开发若干研究进展[J]. 中国矿业大学学报, 2025, 54(1): 1-25.
SANG Shuxun, ZHENG Sijian, LIU Shiqi, et al.Research advances in efficient exploration and development of coal measure gases and deep coallbed methane[J]. Journal of China University of Mining & Technology, 2025, 54(1): 1-25.
[24] LI L, TANG D Z, XU H, et al.Coalbed methane geology and exploration potential in large, thick, low-rank seams in the Bayanhua Sag of the Erlian Basin, northern China[J]. Energy Exploration & Exploitation, 2022, 40(3): 995-1022.
[25] ZHOU J B, WILDE S A.The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1365-1377.
[26] 李娟, 舒良树. 松辽盆地中、新生代构造特征及其演化[J]. 南京大学学报(自然科学版), 2002, 38(4): 525-531.
LI Juan, SHU Liangshu.Mesozoic-Cenozoic tectonic features and evolution of the Song-Liao Basin, NE China[J]. Journal of Nanjing University (Natural Sciences), 2002, 38(4): 525-531.
[27] 张守仁, 张遂安. 松辽盆地深层断陷期地层展布特征及油气勘探意义[J]. 地学前缘, 2009, 16(1): 335-343.
ZHANG Shouren, ZHANG Suian.A study of the distribution of the strata during the fault-depression stage and its signitieance for the petroleum exploration in Songliao Basin[J]. Earth Science Frontiers, 2009, 16(1): 335-343.
[28] 李君, 黄志龙, 刘宝柱, 等. 伸展构造与反转构造对油气分布的控制作用: 以松辽盆地东南隆起区为例[J]. 新疆石油地质, 2008, 29(1): 19-21.
LI Jun, HUANG Zhilong, LIU Baozhu, et al.Control effects of spreading structure and reversal structure on hydrocarbon distribution: An example from Dongnan uplift in Songliao Basin[J]. Xinjiang Petroleum Geology, 2008, 29(1): 19-21.
[29] 冯志强, 张顺, 付秀丽. 松辽盆地姚家组: 嫩江组沉积演化与成藏响应[J]. 地学前缘, 2012, 19(1): 78-88.
FENG Zhiqiang, ZHANG Shun, FU Xiuli.Depositional evolution and accumulation response of Yaojia-Nenjiang Formation in Songliao Basin[J]. Earth Science Frontiers, 2012, 19(1): 78-88.
[30] 孙永河, 陈艺博, 孙继刚, 等. 松辽盆地北部断裂演化序列与反转构造带形成机制[J]. 石油勘探与开发, 2013, 40(3): 275-283.
SUN Yonghe, CHEN Yibo, SUN Jigang, et al.Evolutionary sequence of faults and the formation of inversion structural belts in the northern Songliao Basin[J]. Petroleum Exploration and Development, 2013, 40(3): 275-283.
[31] 付晓飞, 王朋岩, 吕延防, 等. 松辽盆地西部斜坡构造特征及对油气成藏的控制[J]. 地质科学, 2007, 42(2): 209-222.
FU Xiaofei, WANG Pengyan, LYU Yanfang, et al.Tectonic features and control of oil-gas accumulation in the west slope of Songliao Basin[J]. Chinese Journal of Geology, 2007, 42(2): 209-222.
[32] 蒙启安, 万传彪, 朱德丰, 等. 海拉尔盆地“布达特群”的时代归属及其地质意义[J]. 中国科学: 地球科学, 2013, 43(5): 789-803.
MENG Qian, WAN Chuanbiao, ZHU Defeng, et al.Age assignment and geological significance of the “Budate Group” in the Hailar Basin[J]. SCIENCE CHINA Earth Sciences, 2013, 56(6): 970-979.
[33] 葛荣峰, 张庆龙, 王良书, 等. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评, 2010, 56(2): 180-195.
GE Rongfeng, ZHANG Qinglong, WANG Liangshu, et al.Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China[J]. Geological Review, 2010, 56(2): 180-195.
[34] 周建波, 石爱国, 景妍. 东北地块群: 构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1042-1055.
ZHOU Jianbo, SHI Aiguo, JING Yan.Combined NE China blocks: Tectonic evolution and supercontinent reconstructions[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1042-1055.
[35] 胡望水, 吕炳全, 张文军, 等. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学, 2005, 40(1): 16-31.
HU Wangshui, LYU Bingquan, ZHANG Wenjun, et al.An approach to tectonic evolution and dynamics of the Songliao Basin[J]. Chinese Journal of Geology, 2005, 40(1): 16-31.
[36] 冯志强, 董立, 童英, 等. 蒙古-鄂霍茨克洋东段关闭对松辽盆地形成与演化的影响[J]. 石油与天然气地质, 2021, 42(2): 251-264.
FENG Zhiqiang, DONG Li, TONG Ying, et al.Impacts of the closure of eastern Mongolia-Okhotsk Ocean on formation and evolution of Songliao Basin[J]. Oil & Gas Geology, 2021, 42(2): 251-264.
[37] WANG T, ZHENG Y D, ZHANG J J, et al.Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30(6): 1-27.
[38] 邓铭哲, 方成名, 邓棚, 等. 松辽盆地南部梨树地区走滑-逆冲构造的成因: 以小宽断裂带为例[J]. 石油学报, 2020, 41(9): 1089-1099.
DENG Mingzhe, FANG Chengming, DENG Peng, et al.Origin of strike-slip thrust structure in Lishu area, southern Songliao Basin: A case study of Xiaokuan fault belt[J]. Acta Petrolei Sinica, 2020, 41(9): 1089-1099.
[39] 王宏语, 李瑞磊, 朱建峰, 等. 松辽盆地梨树断陷构造沉积学特征及发育机制[J]. 地学前缘, 2023, 30(4): 112-127.
WANG Hongyu, LI Ruilei, ZHU Jianfeng, et al.Tectono-sedimentary characteristics and formation mechanism of the Lishu rift depression, Songliao Basin[J]. Earth Science Frontiers, 2023, 30(4): 112-127.
[40] 刘玉虎, 曹春辉, 李瑞磊, 等. 边界断裂时空差异演化对断陷盆地的控制作用: 以松辽盆地南部伏龙泉断陷为例[J]. 地球科学进展, 2020, 35(1): 79-87.
LIU Yuhu, CAO Chunhui, LI Ruilei, et al.The control of the spatial and temporal differential evolution of boundary faults on faulted basins: Taking the Fulongquan fault depression in the southern Songliao Basin as an example[J]. Advances in Earth Science, 2020, 35(1): 79-87.
[41] 孙永河, 漆家福, 吕延防, 等. 渤中坳陷断裂构造特征及其对油气的控制[J]. 石油学报, 2008, 29(5): 669-675.
SUN Yonghe, QI Jiafu, LYU Yanfang, et al.Characteristics of fault structure and its control to hydrocarbon in Bozhong Depression[J]. Acta Petrolei Sinica, 2008, 29(5): 669-675.
[42] 漆家福. 裂陷盆地中的构造变换带及其石油地质意义[J]. 海相油气地质, 2007, 12(4): 43-50.
QI Jiafu.Structural transfer zones and significance for hydrocarbon accumulation in rifting basins[J]. Marine Origin Petroleum Geology, 2007, 12(4): 43-50.
[43] 唐华风, 杨迪, 邵明礼, 等. 火山地层就位环境对储集层分布的约束: 以松辽盆地王府断陷侏罗系火石岭组二段流纹质火山地层为例[J]. 石油勘探与开发, 2016, 43(4): 573-579.
TANG Huafeng, YANG Di, SHAO Mingli, et al.Constraint of volcano-stratigraphic emplacement environment on the reservoir distribution: A case analysis of rhyolitic volcanic strata in the 2nd member of Jurassic Huoshiling Formation in Wangfu fault depression, Songliao Basin, East China[J]. Petroleum Exploration and Development, 2016, 43(4): 573-579.
[44] 付广, 付晓飞. 断裂输导系统及其组合对油气成藏的控制作用[J]. 世界地质, 2001, 20(4): 344-349.
FU Guang, FU Xiaofei.Controlling of fault transport system and its combination to the formation and distribution of oil or gas reservoirs[J]. World Geology, 2001, 20(4): 344-349.
[45] 付晓飞, 郭雪, 朱丽旭, 等. 泥岩涂抹形成演化与油气运移及封闭[J]. 中国矿业大学学报, 2012, 41(1): 52-63.
FU Xiaofei, GUO Xue, ZHU Lixu, et al.Formation and evolution of clay smear and hydrocarbon migration and sealing[J]. Journal of China University of Mining & Technology, 2012, 41(1): 52-63.
Outlines

/