0 引言
1 实验设计
1.1 实验材料及设备
1.2 实验方案
表1 微观模拟实验方案参数 |
方案编号 | 初期建库阶段注气速度/(μL·min−1) | 循环储采阶段底水 上侵速度/(μL·min−1) | 循环储采阶段注气 速度/(μL·min−1) |
---|---|---|---|
1 | 1.00 | ||
2 | 0.25 | ||
3 | 1.00 | ||
4 | 3.00 | ||
5 | 10.00 | ||
6 | 1.00 | 1.50 | 1.00 |
7 | 10.00 | 15.00 | 10.00 |
8 | 1.00 | 1.50→15.00 | 2.00→10.00 |
Petroleum Exploration and Development >
Microscopic simulation experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs
Received date: 2023-06-06
Revised date: 2023-12-11
Online published: 2024-01-23
Based on the microfluidic technology, a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage (UGS) rebuilt from water-invaded gas reservoirs. Through analysis of the gas-liquid contact stabilization mechanism, flow and occurrence, the optimal control method for lifecycle efficient operation of UGS was explored. The results show that in the initial construction stage of UGS, the action of gravity should be fully utilized by regulating the gas injection rate, so as to ensure the macroscopically stable migration of the gas-liquid contact, and greatly improve the gas sweeping capacity, providing a large pore space for gas storage in the subsequent cyclical injection-production stage. In the cyclical injection-production stage of UGS, a constant gas storage and production rate leads to a low pore space utilization. Gradually increasing the gas storage and production rate, that is, transitioning from small volume to large volume, can continuously break the hydraulic equilibrium of the remaining fluid in the porous media, which then expands the pore space and flow channels. This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.
JIANG Tongwen , QI Huan , WANG Zhengmao , LI Yiqiang , WANG Jinfang , LIU Zheyu , CAO Jinxin . Microscopic simulation experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs[J]. Petroleum Exploration and Development, 2024 , 51(1) : 182 -189 . DOI: 10.11698/PED.20230296
表1 微观模拟实验方案参数 |
方案编号 | 初期建库阶段注气速度/(μL·min−1) | 循环储采阶段底水 上侵速度/(μL·min−1) | 循环储采阶段注气 速度/(μL·min−1) |
---|---|---|---|
1 | 1.00 | ||
2 | 0.25 | ||
3 | 1.00 | ||
4 | 3.00 | ||
5 | 10.00 | ||
6 | 1.00 | 1.50 | 1.00 |
7 | 10.00 | 15.00 | 10.00 |
8 | 1.00 | 1.50→15.00 | 2.00→10.00 |
[1] |
江同文, 王锦芳, 王正茂, 等. 地下储气库与天然气驱油协同建设实践与认识[J]. 天然气工业, 2021, 41(9): 66-74.
|
[2] |
马新华, 郑得文, 丁国生, 等. 复杂地质条件储气库“极限动用”理论与实践[J]. 石油勘探与开发, 2023, 50(2): 373-383.
|
[3] |
江同文, 王正茂, 王锦芳. 天然气顶部重力驱油储气一体化建库技术[J]. 石油勘探与开发, 2021, 48(5): 1061-1068.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
马新华, 郑得文, 申瑞臣, 等. 中国复杂地质条件气藏型储气库建库关键技术与实践[J]. 石油勘探与开发, 2018, 45(3): 489-499.
|
[8] |
李登伟, 张烈辉, 周克明, 等. 可视化微观孔隙模型中气水两相渗流机理[J]. 中国石油大学学报(自然科学版), 2008, 32(3): 80-83.
|
[9] |
|
[10] |
朱思南, 孙军昌, 魏国齐, 等. 水侵气藏型储气库注采相渗滞后数值模拟修正方法[J]. 石油勘探与开发, 2021, 48(1): 166-174.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
/
〈 |
|
〉 |