PETROLEUM EXPLORATION

Transformation mechanism of argillaceous carbonate rock by the coupling of bioturbation and diagenesis: A case study of the Cretaceous System of the Mesopotamia Basin in the Middle East

  • YE Yu ,
  • LI Fengfeng ,
  • SONG Xinmin ,
  • GUO Rui
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    2. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China

Received date: 2021-02-25

  Revised date: 2021-09-23

  Online published: 2021-11-25

Abstract

The transformation mechanism of joint bioturbation and diagenesis was studied based on core, cast thin section and physical property data of Cretaceous strata in the Mesopotamia Basin, the Middle East. There are 3 ways of biological transformation of rocks: (1) The living creatures transformed formations mechanically to make the rocks looser and intergranular pores increase. (2) After formation, burrows were backfilled with coarse-grained debris, and then unsaturated fluid infiltrated into the burrows during the penecontemporaneous period, resulting in dissolution. (3) Chemical alteration occurred in abandoned burrows and dolomitization produced a large number of intercrystalline pores. The coupling of bioturbation and dissolution occurred mainly in the penecontemporaneous phase, and was controlled by rock type, sea level decline, burrow density, infillings, and water environment etc. As the burrows had better physical properties than the substrate, unsaturated fluid preferentially migrated along the burrows, leading to dissolution expansion of the burrows first and then dissolution of the substrate. The coupling of bioturbation and dolomitization occurred mainly in the burial phase. The rich organic matter and reducing bacteria in the burrow provided material basis, reducing conditions and alkaline environment for dolomitization. The metasomatism in the penecontemporaneous period had little effect on the physical properties of the burrows. When the burrows were separated from the deposition interface, equimolar metasomatism occurred in the burrows in a closed environment, forming euhedral fine-crystalline dolomite with intercrystalline pores. The transformation degree of bioturbation to argillaceous carbonate reservoir depends on rock type, density, connectivity, infillings and structure of the burrows. With the increase of the clay content, the improvement to rock physical properties by bioturbation becomes more prominent. When the burrows are filled with coarse-grained debris or fine-crystalline dolomite, the greater the density, the higher the connectivity, and the lower the tortuosity of burrows, the better the physical properties of the argillaceous carbonate rocks are.

Cite this article

YE Yu , LI Fengfeng , SONG Xinmin , GUO Rui . Transformation mechanism of argillaceous carbonate rock by the coupling of bioturbation and diagenesis: A case study of the Cretaceous System of the Mesopotamia Basin in the Middle East[J]. Petroleum Exploration and Development, 2021 , 48(6) : 1187 -1201 . DOI: 10.11698/PED.2021.06.10

References

[1] 穆龙新, 陈亚强, 许安著, 等. 中国石油海外油气田开发技术进展与发展方向[J]. 石油勘探与开发, 2020, 47(1): 120-128.
MU Longxin, CHEN Yaqiang, XU Anzhu, et al. Technological progress and development directions of PetroChina overseas oil and gas field production[J]. Petroleum Exploration and Development, 2020, 47(1): 120-128.
[2] 宋新民, 李勇. 中东碳酸盐岩油藏注水开发思路与对策[J]. 石油勘探与开发, 2018, 45(4): 679-689.
SONG Xinmin, LI Yong. Optimum development options and strategies for water injection development of carbonate reservoirs in the middle East[J]. Petroleum Exploration and Development, 2018, 45(4): 679-689.
[3] 孙文举, 乔占峰, 邵冠铭, 等. 伊拉克哈法亚油田中白垩统Mishrif组MB1-2亚段沉积与储集层构型[J]. 石油勘探与开发, 2020, 47(4): 713-722.
SUN Wenju, QIAO Zhanfeng, SHAO Guanming, et al. Sedimentary and reservoir architectures of MB1-2 sub-member of Middle Cretaceous Mishrif Formation of Halfaya Oilfield in Iraq[J]. Petroleum Exploration and Development, 2020, 47(4): 713-722.
[4] 李勇, 赵丽敏, 王舒, 等. 碳酸盐岩油藏水平井井网周期性交替注水技术[J]. 石油勘探与开发, 2021, 48(5): 986-994.
LI Yong, ZHAO Limin, WANG Shu, et al. Using cyclic alternating water injection to enhance oil recovery for carbonate[J]. Petroleum Exploration and Development, 2021, 48(5): 986-994.
[5] 杨式溥, 张建平, 杨美芳. 中国遗迹化石[M]. 北京: 科学出版社, 2004.
YANG Shipu, ZHANG Jianping, YANG Meifang. Chinese ichnofossil[M]. Beijing: Science Press, 2004.
[6] AL-MUTWALI M M, AL-BANNA N Y, AL-GHREAR J S. Microfacies and sequence stratigraphy of the Late Campanian Bekhme Formation in the Dohuk area, north Iraq[J]. Geoarabia, 2008, 13(1): 39-54.
[7] CROSS N, GOODALL I, HOLLIS C, et al. Reservoir description of a mid-Cretaceous siliciclastic-carbonate ramp reservoir: Mauddud Formation in the Raudhatain and Sabiriyah Fields, North Kuwait[J]. Geoarabia Manama, 2010, 15(2): 17-50.
[8] BANIAK G M, GINGRAS M K, BURNS B A, et al. An example of a highly bioturbated, storm-influenced shoreface deposit: Upper Jurassic Ula Formation, Norwegian North Sea[J]. Sedimentology, 2014, 61: 1261-1285.
[9] 牛永斌, 胡亚洲, 高文秀, 等. 豫西北奥陶系马家沟组三段遗迹组构及沉积演化规律[J]. 地质学报, 2018, 92(1): 15-27.
NIU Yongbin, HU Yazhou, GAO Wenxiu, et al. Ichnofabrics and sedimentary evolution of the third member of Ordovician Majiagou Formation in Northwestern Henan province[J]. Acta Geological Sinica, 2018, 92(1): 15-27.
[10] BANIAK G M, LA CROIX A D, POLO C A, et al. Associating X-ray microtomography with permeability contrasts in bioturbated media[J]. Ichnos, 2014, 21(4): 234-250.
[11] 林世国, 施振生, 李君, 等. 四川盆地上三叠统生物扰动环境分析及与储集性能的关系[J]. 天然气地球科学, 2012, 23(1): 74-80.
LIN Shiguo, SHI Zhensheng, LI Jun, et al. Environment interpretation of Upper Triassic bioturbation structure and correlation with petrophysical properties of reservoir in Sichuan Basin[J]. Natural Gas Geoscience, 2012, 23(1): 74-80.
[12] GINGRAS M K, BANIAK G M, GORDON J, et al. Porosity and permeability in bioturbated sediments[J]. Developments in Sedimentology, 2012, 64(27): 837-868.
[13] TONKIN N S, MCILROY D, MEYER R, et al. Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation, Jeanne d'Arc Basin, offshore Newfoundland, Canada[J]. AAPG Bulletin, 2010, 94(7): 1059-1078.
[14] GOLAB J A, SMITH J J, CLARK A K, et al. Bioturbation-influenced fluid pathways within a carbonate platform system: The Lower Cretaceous (Aptian-Albian) Glen Rose Limestone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 465: 138-155.
[15] GINGRAS M K, PEMBERTON S G, MENDOZA C A, et al. Assessing the anisotropic permeability of Glossifungites surfaces[J]. Petroleum Geoscience, 1999, 5(4): 349-357.
[16] BANIAK G M, GINGRAS M K, PEMBERTON S G. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group, Pine Creek gas field, central Alberta, Canada[J]. Marine & Petroleum Geology, 2013, 48: 275-292.
[17] 伏美燕, 赵丽敏, 段天向, 等. 伊拉克HF油田Mishrif组厚壳蛤滩相储层沉积与早期成岩特征[J]. 中国石油大学学报(自然科学版), 2016, 40(5): 1-9.
FU Meiyan, ZHAO Limin, DUAN Tianxiang, et al. Reservoir and early diagenesis characteristics of rudist shoal of Mishrif Formation in HF Oilfield of Iraq[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(5): 1-9.
[18] 李峰峰, 郭睿, 余义常, 等. 伊拉克M油田白垩系Mishrif组沉积特征及控储机理[J]. 沉积学报, 2020, 38(5): 1076-1087.
LI Fengfeng, GUO Rui, YU Yichang, et al. Sedimentary characteristics and controlling on reservoir of the Cretaceous Mishrif Formation in M oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1076-1087.
[19] BROMLEY R G. Trace fossils: Biology, taphonomy and applications[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 129(1): 193-194.
[20] HUSSEIN M A, ALQUDAH M, BLESSENOHL M, et al. Depositional environment of late Cretaceous to Eocene organic-rich marls from Jordan[J]. Geoarabia, 2015, 20(1): 191-210.
[21] TAYLOR A M, GAWTHORPE R L. Application of sequence stratigraphy and trace fossil analysis to reservoir description: Examples from the Jurassic of the North Sea[M]. London: The Geology Society Press, 2015: 317-335.
[22] 牛永斌, 崔胜利, 胡亚洲, 等. 塔里木盆地塔河油田奥陶系数字岩心图像中生物扰动的定量表征[J]. 古地理学报, 2017, 19(2): 353-363.
NIU Yongbin, CUI Shengli, HU Yazhou, et al. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe Oilfield of Tarim Basin[J]. Journal of Palaeogeography, 2017, 19(2): 353-363.
[23] LA CROIX A D, GINGRAS M K, PEMBERTON S G, et al. Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada[J]. Marine and Petroleum Geology, 2013, 43: 464-477.
[24] CORLETT H J, JONES B. Petrographic and geochemical contrasts between calcite-and dolomite-filled burrows in the Middle Devonian Lonely Bay Formation, Northwest Territories, Canada: Implications for dolomite formation in Paleozoic burrows[J]. Journal of Sedimentary Research, 2012, 82(9): 648-663.
[25] GINGRAS M K, PEMBERTON S G, MUELENBACHS K, et al. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada[J]. Geobiology, 2004, 2(1): 21-30.
[26] 张学丰, 刘波, 蔡忠贤, 等. 白云岩化作用与碳酸盐岩储层物性[J]. 地质科技情报, 2010, 29(3): 79-85.
ZHANG Xuefeng, LIU Bo, CAI Zhongxian, et al. Dolomitization and physical properties of carbonate reservoirs[J]. Geological Science and Technology Information, 2010, 29(3): 79-85.
[27] 胡亚洲, 牛永斌, 崔胜利, 等. 碳酸盐岩中生物潜穴充填特征及其诱导孔隙演化规律: 以豫西奥陶系马家沟组三段为例[J]. 沉积学报, 2019, 37(4): 690-701.
HU Yazhou, NIU Yongbin, CUI Shengli, et al. Filling characteristics of burrow in carbonate and the evolutionary principle of burrow mediated pores: A case studied from the third member of Majiagou Formation, Ordovician, west Henan province[J]. Acta Sedimentologica Sinica, 2019, 37(4): 690-701.
[28] PETER A S, DANS G U S. A color guide to the petrography of carbonate rocks: Grains, textures, porosity, diagenesis[R]. Houston: AAPG, 2003.
[29] MAHDI T A, AQRAWI A A M, HORBURY A D, et al. Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin, Iraq[J]. Geoarabia, 2013, 18(1): 139-174.
[30] 董小波, 牛永斌. 成岩作用对豫西北马家沟组三段遗迹化石充填物孔隙发育的影响[J]. 海相油气地质, 2015, 20(3): 17-27.
DONG Xiaobo, NIU Yongbin. Diagenesis and effect of trace fossil fillings on pore development in lower Ordovician Majiagou Member-3 Limestone in the Northwest of Henan[J]. Marine Origin Petroleum Geology, 2015, 20(3): 17-27.
[31] 芦飞凡, 谭秀成, 钟原, 等. 四川盆地西北部二叠系栖霞组准同生期砂糖状白云岩特征及成因[J]. 石油勘探与开发, 2020, 47(6): 1134-1148, 1173.
LU Feifan, TAN Xiucheng, ZHONG Yuan, et al. Origin of the penecontemporaneous sucrosic dolomite in the Permian Qixia Formation, northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1134-1148, 1173.
[32] MIRSAL I A, ZANKL H. Some phenomenological aspects of carbonate geochemistry: The control effect of transition metals[J]. Geologische Rundschau, 1985, 74(2): 367-377.
[33] VAN L Y, WARTHMANN R, VASCONCELOS C, et al. Sulfate- reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J]. Geobiology, 2003, 1(1): 71-79.
[34] BANIAK G M, AMSKOLD L, KONHAUSER K O, et al. Sabkha and burrow-mediated dolomitization in the Mississippian Debolt formation, Northwestern Alberta, Canada[J]. Ichnos, 2014, 21(3): 158-174.
[35] WASLENCHUK D G, MATSON E A, ZAJAC R N, et al. Geochemistry of burrow waters vented by a bioturbating shrimp in Bermudian sediments[J]. Marine Biology, 1983, 72(3): 219-225.
[36] VAN L Y, WARTHMANN R, VASCONCELOS C, et al. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology 2003, 50(2): 237-245.
[37] AL-QAYIM B, QADIR F M, AL-BIATY F. Dolomitization and porosity evaluation of the Cretaceous Upper Qamchuqa(Mauddud) Formation, Khabbaz oil field, Kirkuk area, northern Iraq[J]. Geoarabia Manama, 2010, 15(4): 49-76.
[38] 李峰峰, 郭睿, 刘立峰, 等. 伊拉克M油田白垩系Mishrif 组潟湖环境碳酸盐岩储集层成因机理[J]. 地球科学, 2021, 46(1): 1-14.
LI Fengfeng, GUO Rui, LIU Lifeng, et al. Genesis of reservoirs of lagoon in the Mishrif Formation, M Oilfield, Iraq[J]. Earth Science, 2021, 46(1): 1-14.
[39] SADOONI F N. Stratigraphy, depositional setting and reservoir characteristics of Turonian-Campanian carbonate in central Iraq[J]. Journal of Petroleum Geology, 2004, 27(4): 357-371.
[40] ANDRIAMIHAJA S, PADMANABHAN E, BEN-AWUAH J, 等. 静态条件下碳酸盐岩三维孔隙网络的溶蚀改造及其对孔隙结构的影响[J]. 石油勘探与开发, 2019, 46(2): 361-369.
ANDRIAMIHAJA S, PADMANABHAN E, BEN-AWUAH J, et al. Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks[J]. Petroleum Exploration and Development, 2019, 46(2): 361-369.
[41] 李伟强, 穆龙新, 赵伦, 等. 滨里海盆地东缘石炭系碳酸盐岩储集层孔喉结构特征及对孔渗关系的影响[J]. 石油勘探与开发, 2020, 47(5): 958-971.
LI Weiqiang, MU Longxin, ZHAO Lun, et al. Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development, 2020, 47(5): 958-971.
[42] QI Y A, WANG M, ZHENG W, et al. Calcite cements in burrows and their influence on reservoir property of the Donghe sandstone, Tarim Basin, China[J]. Journal of Earth Science, 2012, 23(2): 129-141.
[43] 牛永斌, 崔胜利, 胡亚洲, 等. 塔河油田奥陶系生物扰动型储集层的三维重构及启示意义[J]. 古地理学报, 2018, 20(4): 691-702.
NIU Yongbin, CUI Shengli, HU Yazhou, et al. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe Oilfield[J]. Journal of Palaeogeography, 2018, 20(4): 691-702.
[44] HOLLIS C. Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate[J]. Petroleum Geoscience, 2011, 17(3): 223-241.
Outlines

/