离子水合桥在低渗—特低渗油藏开发中的作用机理
|
金旭(1982-),男,吉林长春人,博士,中国石油勘探开发研究院正高级工程师,主要从事石油地质实验技术创新及能源微纳新材料设计开发等基础应用研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院,邮政编码:100083。E-mail:jinxu@petrochina.com.cn |
Copy editor: 刘恋
收稿日期: 2025-03-19
修回日期: 2025-09-18
网络出版日期: 2025-10-09
基金资助
国家重点研发计划(2019YFA0708700)
国家自然科学基金(52542310)
Mechanisms of hydrated ion bridges in the development of low and ultra-low permeability reservoirs
Received date: 2025-03-19
Revised date: 2025-09-18
Online published: 2025-10-09
聚焦低渗—特低渗油藏中原油-岩石界面处的离子水合桥作用,总结其研究方法、形成机理、作用强度及破坏机制,讨论离子水合桥对原油赋存状态和可动性的影响机制,在此基础上,分析现阶段离子水合桥研究存在的关键挑战,指出未来发展方向。当前该领域研究通常采用实验表征技术与分子模拟方法开展;离子水合桥形成涉及的微观作用力主要包括静电作用、氢键、范德华作用等,其中原油极性分子与水合离子之间的氢键是破坏离子水合桥作用的主要位点;离子水合桥作用强度受离子种类和浓度、储层溶液环境、油藏岩石矿物类型、原油中极性组分的共同调控,进而影响原油赋存状态和可动性。离子水合桥相关研究在研究方法、尺度贯通及地质复杂性3个方面存在系统性挑战,离子水合桥的动态演化机制尚未明晰、时空跨尺度建模预测存在衔接断层、实际地质环境的复现性不足。未来研究可从以下3方面寻求突破:发展原位动态实验表征与机器学习辅助的模拟策略、建立跨尺度模型融合和升尺度预测框架、开展复杂矿物-多物理场耦合作用下的离子水合桥研究。
金旭 , 崔风路 , 吴一宁 , 王晓琦 , 孟思炜 , 张辰君 , 刘晓丹 , 陶嘉平 , 沈蔓 , 王奉超 . 离子水合桥在低渗—特低渗油藏开发中的作用机理[J]. 石油勘探与开发, 2025 , 52(5) : 1145 -1153 . DOI: 10.11698/PED.20250168
This study focuses on the hydrated ion bridge (HIB) effect at the oil-rock interface in low- to ultra-low-permeability oil reservoirs. It systematically summarizes the research methodologies, formation mechanisms, interaction strength, and disruption mechanisms of HIB, and discusses the influencing mechanisms of HIB on the occurrence state and mobility of crude oil. On this basis, the key challenges inherent in the current HIB research are analyzed, and prospective directions for future development are proposed. Currently, research in this field primarily relies on experimental characterization techniques and molecular simulation methods. The microscopic interactions involved in HIB formation mainly include electrostatic interactions, hydrogen bonds and van der Waals forces. Notably, the hydrogen bonds between polar molecules in crude oil and hydrated ions serve as the primary sites for disrupting the HIB effect. The interaction strength of HIB is collectively modulated by ion type and concentration, reservoir solution environment, mineral type of reservoir rocks, and polar components in crude oil, which subsequently influence the occurrence state and mobility of crude oil. Systematic challenges persist in HIB-related research across three dimensions: research methodologies, scale integration and geological complexity. Specifically, the dynamic evolution mechanism of HIB remains inadequately elucidated; a discontinuity exists in the connection of spatiotemporal cross-scale modeling and prediction; and the reproducibility of actual geological environments in experimental settings is insufficient. Future research may pursue breakthroughs in the following three aspects: (1) developing in-situ dynamic experimental characterization techniques and machine learning-augmented simulation strategies; (2) establishing a framework for cross-scale model fusion and upscaling prediction; and (3) conducting in-depth studies on HIB under the coupled effects of complex mineral systems and multi-physical fields.
| [1] |
孙龙德, 方朝亮, 李峰, 等. 中国沉积盆地油气勘探开发实践与沉积学研究进展[J]. 石油勘探与开发, 2010, 37(4): 385-396.
|
| [2] |
袁士义, 韩海水, 王红庄, 等. 油田开发提高采收率新方法研究进展与展望[J]. 石油勘探与开发, 2024, 51(4): 841-854.
|
| [3] |
|
| [4] |
|
| [5] |
孙胜新, 张乔良, 王刘英, 等. 基于数字岩心实验对低渗油藏数值模拟的改进[J]. 石油化工应用, 2024, 43(11): 24-29.
|
| [6] |
金旭, 李国欣, 孟思炜, 等. 陆相页岩油可动用性微观综合评价[J]. 石油勘探与开发, 2021, 48(1): 222-232.
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
洪祥宇, 徐亨宇, 崔风路, 等. 分子模拟在非常规油气开发中的应用[J]. 计算力学学报, 2021, 38(3): 313-320.
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
周尚文, 郭和坤, 薛华庆. 特低渗油藏水驱剩余可动油分布特征实验研究[J]. 西安石油大学学报(自然科学版), 2015, 30(2): 65-68.
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
胡勇. 低渗油藏原油-岩石间粘附力定量解析及破坏机理研究[D]. 青岛: 中国石油大学(华东), 2022.
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
雷斌, 薛志伟, 高明明, 等. 低渗油藏启动压力梯度实验研究[J]. 广东化工, 2024, 51(15): 21-22.
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
何龙. 低矿化度水驱提高采收率研究进展[J]. 应用化工, 2021, 50(增刊1): 333-336.
|
/
| 〈 |
|
〉 |