0 引言
1 实验介绍
1.1 实验样品
表1 脱气原油及溶解气组分表 |
| 脱气原油 | 溶解气 | ||
|---|---|---|---|
| 组分 | 物质的量分数/% | 组分 | 物质的量分数/% |
| C1—C5 | 2.35 | CO2 | 0.83 |
| C6—C10 | 29.41 | N2 | 2.04 |
| C11—C20 | 33.75 | CH4 | 74.76 |
| C21—C30 | 27.47 | C2H6 | 10.06 |
| C30+ | 7.02 | C3H8 | 5.74 |
| C4H10 | 3.35 | ||
| C5H12 | 3.22 | ||
特低渗透砂岩油藏CO2驱原油动用特征及埋存机理
|
刘希良(1994-),男,山东烟台人,中国石油大学(北京)安全与海洋工程学院在读博士,加拿大阿尔伯塔大学多纳多工程创新中心交换培养博士研究生,主要从事CO2提高采收率及地质封存方面的研究工作。地址:北京市昌平区府学路18号,中国石油大学(北京)安全与海洋工程学院,邮政编码:102249。E-mail: xi_liang_liu@163.com |
Office editor: 刘恋
收稿日期: 2024-08-21
修回日期: 2024-12-25
网络出版日期: 2025-02-07
基金资助
国家自然科学基金面上项目“致密砂岩油藏注CO2微纳米孔喉内流体的空间再分布及输运行为研究”(52274053)
北京市自然科学基金面上项目“面向双碳目标的页岩油藏注CO2微观增油机制研究”(3232028)
Oil production characteristics and CO2 storage mechanisms of CO2 flooding in ultra-low permeability sandstone oil reservoirs
Received date: 2024-08-21
Revised date: 2024-12-25
Online published: 2025-02-07
刘希良 , 陈浩 , 李阳 , 祝仰文 , 廖海婴 , 赵清民 , 周显民 , 曾宏波 . 特低渗透砂岩油藏CO2驱原油动用特征及埋存机理[J]. 石油勘探与开发, 2025 , 52(1) : 174 -184 . DOI: 10.11698/PED.20240537
Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example, a series of experiments, including slim tube displacement experiments of CO2-oil system, injection capacity experiments, and high-temperature, high-pressure online nuclear magnetic resonance displacement experiments, are conducted to reveal the oil/gas mass transfer pattern and oil production mechanisms during CO2 flooding in ultra-low permeability reservoirs. The impacts of CO2 storage pore range and miscibility on oil production and CO2 storage characteristics during CO2 flooding are clarified. The CO2 flooding process is divided into three stages: oil displacement stage by CO2, CO2 breakthrough stage, CO2 extraction stage. Crude oil expansion and viscosity reduction are the main mechanisms for improving recovery in the CO2 displacement stage. After CO2 breakthrough, the extraction of light components from the crude oil further enhances oil recovery. During CO2 flooding, the contribution of crude oil in large pores to the enhanced recovery exceeds 46%, while crude oil in medium pores serves as a reserve for incremental recovery. After CO2 breakthrough, a small portion of the crude oil is extracted and carried into nano-scale pores by CO2, becoming residual oil that is hard to recover. As the miscibility increases, the CO2 front moves more stably and sweeps a larger area, leading to increased CO2 storage range and volume. The CO2 full-storage stage contributes the most to the overall CO2 storage volume. In the CO2 escape stage, the storage mechanism involves partial in-situ storage of crude oil within the initial pore range and the CO2 carrying crude oil into smaller pores to increase the volume of stored CO2. In the CO2 leakage stage, as crude oil is produced, a significant amount of CO2 leaks out, causing a sharp decline in the storage efficiency.
表1 脱气原油及溶解气组分表 |
| 脱气原油 | 溶解气 | ||
|---|---|---|---|
| 组分 | 物质的量分数/% | 组分 | 物质的量分数/% |
| C1—C5 | 2.35 | CO2 | 0.83 |
| C6—C10 | 29.41 | N2 | 2.04 |
| C11—C20 | 33.75 | CH4 | 74.76 |
| C21—C30 | 27.47 | C2H6 | 10.06 |
| C30+ | 7.02 | C3H8 | 5.74 |
| C4H10 | 3.35 | ||
| C5H12 | 3.22 | ||
| [1] |
|
| [2] |
|
| [3] |
李阳, 王敏生, 薛兆杰, 等. 绿色低碳油气开发工程技术的发展思考[J]. 石油钻探技术, 2023, 51(4): 11-19.
|
| [4] |
宋新民, 王峰, 马德胜, 等. 中国石油二氧化碳捕集、驱油与埋存技术进展及展望[J]. 石油勘探与开发, 2023, 50(1): 206-218.
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
李阳, 赵清民, 吕琦, 等. 中国陆相页岩油开发评价技术与实践[J]. 石油勘探与开发, 2022, 49(5): 955-964.
|
| [12] |
计秉玉, 何应付. 中国石化低渗透油藏CO2驱油实践与认识[J]. 油气藏评价与开发, 2021, 11(6): 805-811.
|
| [13] |
|
| [14] |
侯大力, 龚凤鸣, 陈涛, 等. 低渗透油藏注CO2混相驱及CO2埋存评价[J]. 大庆石油地质与开发, 2024, 43(1): 59-67.
|
| [15] |
侯大力, 龚凤鸣, 陈泊, 等. 底水砂岩气藏注CO2驱气提高采收率机理及埋存效果[J]. 天然气工业, 2024, 44(4): 93-103.
|
| [16] |
张烈辉, 熊伟, 赵玉龙, 等. 衰竭底水气藏注CO2提高天然气采收率与碳封存机理[J]. 天然气工业, 2024, 44(4): 25-38.
|
| [17] |
|
| [18] |
陈秀林, 王秀宇, 许昌民, 等. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究[J]. 油气藏评价与开发, 2023, 13(3): 296-304.
|
| [19] |
国家能源局. 最低混相压力实验测定方法: 细管法: SY/T 6573—2016[S]. 北京: 石油工业出版社, 2016.
National Energy Administration. Measurement method for minimum miscible pressure by slim tube test: SY/T 6573-2016[S]. Beijing: Petroleum Industry Press, 2016.
|
| [20] |
左名圣, 陈浩, 赵杰文, 等. 准噶尔盆地吉木萨尔凹陷页岩油藏注CO2吞吐提高采收率机理[J]. 天然气工业, 2024, 44(4): 126-134.
|
| [21] |
李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020, 27(1): 1-10.
|
| [22] |
袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668.
|
| [23] |
陈浩, 刘希良, 贾宁洪, 等. CO2近混相驱的关键科学问题与展望[J]. 石油科学通报, 2020, 5(3): 392-401.
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
李蕾, 郑自刚, 杨承伟, 等. 超低渗油藏超临界CO2驱油特征及原油动用能力[J]. 科学技术与工程, 2021, 21(29):12551-12558.
|
| [30] |
|
| [31] |
邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.
|
| [32] |
李阳, 王锐, 赵清民, 等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发, 2023, 50(2): 424-430.
|
| [33] |
芮振华, 李阳, 薛兆杰, 等. CO2提高油气采收率与地质封存关键技术发展建议[J]. 前瞻科技, 2023, 2(2): 145-160.
|
| [34] |
王国锋. 吉林油田二氧化碳捕集、驱油与埋存技术及工程实践[J]. 石油勘探与开发, 2023, 50(1): 219-226.
|
| [35] |
汪芳, 廖广志, 苏春梅, 等. 二氧化碳捕集、驱油与封存项目碳减排量核算方法[J]. 石油勘探与开发, 2023, 50(4): 862-871.
|
/
| 〈 |
|
〉 |