地震数据时频分析的W变换及其改进方法
|
王仰华(1963-),男,江苏盐城人,英国帝国理工大学终身教授,英国皇家工程院院士,中国工程院外籍院士,主要从事应用地球物理研究。地址:英国伦敦,帝国理工大学资源地球物理学院,邮政编码:SW7 2AZ。E-mail:yanghua.wang@imperial.ac.uk |
收稿日期: 2024-04-19
修回日期: 2024-05-30
网络出版日期: 2024-08-02
基金资助
国家自然科学基金(42055402)
The W transform and its improved methods for time-frequency analysis of seismic data
Received date: 2024-04-19
Revised date: 2024-05-30
Online published: 2024-08-02
针对常规线性时频分析方法无法同时达到时间域和频率域上的高分辨率和能量聚焦,尤其在低频区域分辨率较差的问题,为提高线性时频分析方法在低频区域的分辨率,提出了W变换方法,在线性变换中引入瞬时频率参数,构建与地震数据瞬时频率相匹配的分析时窗。将W变换方法与典型的非线性时频分析方法——魏格纳-维利分布(WVD)进行了对比。WVD方法展示的是时间-频率域中的能量分布,明确指示子波的时间重心和频率重心,而W变换中由于引入了任意时间位置所对应的瞬时频率作为变换参数,所展示的时间-频率谱因而也具有明确的能量聚焦重心,因此,W变换与WVD方法具有直接对标意义。分析了近年来W变换的3种改进方法的发展状况,详细阐述从常规W变换、谐变时窗W变换、分数阶W变换、直到线性正则W变换的发展和演进。通过W变换在河道砂体识别和溶洞检测方面的3个应用实例,验证W变换可以提高时间-频率谱的分辨率与能量聚焦。
王仰华 , 饶莹 , 赵振聪 . 地震数据时频分析的W变换及其改进方法[J]. 石油勘探与开发, 2024 , 51(4) : 774 -782 . DOI: 10.11698/PED.20240260
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency domains at the same time, especially in the low frequency region. In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region, we have proposed a W transform method, in which the instantaneous frequency is introduced as a parameter into the linear transformation, and the analysis time window is constructed which matches the instantaneous frequency of the seismic data. In this paper, the W transform method is compared with the Wigner-Ville distribution (WVD), a typical nonlinear time-frequency analysis method. The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet, while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing, because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter. Therefore, the W transform can be benchmarked directly by the WVD method. We summarize the development of the W transform and three improved methods in recent years, and elaborate on the evolution of the standard W transform, the chirp-modulated W transform, the fractional-order W transform, and the linear canonical W transform. Through three application examples of W-transform in fluvial sand body identification and reservoir prediction, it is verified that W-transform can improve the resolution and energy focusing of time-frequency spectra.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
/
| 〈 |
|
〉 |