注水井井筒动态流体力学建模与工程仿真
贾德利(1980-),男,黑龙江哈尔滨人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事分层注采和井筒工程控制技术等方面的研究工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院智能控制与装备研究所(交叉学科研究中心),邮政编码:100083。E-mail: jiadeli422@petrochina.com.cn |
Copy editor: 刘恋
收稿日期: 2022-11-16
修回日期: 2023-08-14
网络出版日期: 2023-09-22
基金资助
国家自然科学基金面上项目“大数据驱动下的老油田水驱精细分析方法研究”(52074345)
中国石油天然气集团有限公司科学研究与技术开发项目“智能分层注采工程技术研究”(2021ZG12)
Modelling and engineering simulation of fluid mechanics in water injection wellbores
Received date: 2022-11-16
Revised date: 2023-08-14
Online published: 2023-09-22
为了研究注水井井筒工况下流体动态响应机理,基于流体力学微元分析和水力学经典理论,建立流体微元压力-流速关系模型,推导求解注水井井筒空间流体压力、流速的动态分布;结合中国某典型斜井生产数据,进行不同注入压力和不同注入量条件下井筒压力动态分布、油管流体传输延迟特性和衰减特性、井口压力波动下井筒压力幅值动态分布的数值模拟与分析。结果表明:井筒沿程压力损失与绝对压力值无关,设计波码通信编解码方案时无须考虑注入的绝对压力值;注入压力恒定时,井口注入流量越大,井筒沿程损失越大。流体波信号延时幅值主要取决于井筒的长度;管径越小,流体波信号衰减幅度越大。同井深下生成目标波码幅值(压差识别有效值)越高,为克服井筒沿程损失所需的井口压力波幅值越大。
贾德利 , 温昊扬 , 孙福超 , 王全宾 , 杨清海 , 付涛 . 注水井井筒动态流体力学建模与工程仿真[J]. 石油勘探与开发, 2023 , 50(5) : 1074 -1082 . DOI: 10.11698/PED.20220775
To study the fluid dynamic response mechanism under the working condition of water injection well borehole, based on the microelement analysis of fluid mechanics and the classical theory of hydrodynamics, a fluid microelement pressure-flow rate relationship model is built to derive and solve the dynamic distribution of fluid pressure and flow rate in the space of well borehole. Combined with the production data of a typical inclined well in China, numerical simulations and analyses are carried out to analyze the dynamic distribution of wellbore pressure at different injection pressures and injection volumes, the delayed and attenuated characteristics of fluid transmission in oil tube, and the dynamic distribution of wellbore pressure amplitude under the fluctuation of wellhead pressure. The pressure loss along the wellbore has nothing to do with the absolute pressure, and the design of the coding and decoding scheme for wave code communication doesn’t need to consider the absolute pressure during injecting. When the injection pressure is constant, the higher the injection flow rate at the wellhead, the larger the pressure loss along the wellbore. The fluid wave signal delay amplitude mainly depends on the length of the wellbore. The smaller the tubing diameter, the larger the fluid wave signal attenuation amplitude. The higher the target wave code amplitude (differential pressure identification root mean square) generated at the same well depth, the greater the wellhead pressure wave amplitude required to overcome the wellbore pressure loss.
[1] |
刘合, 郑立臣, 俞佳庆, 等. 分层注水井下监测与数据传输技术的发展及展望[J]. 石油勘探与开发, 2023, 50(1): 174-182.
|
[2] |
刘合, 肖国华, 孙福超, 等. 新型大斜度井同心分层注水技术[J]. 石油勘探与开发, 2015, 42(4): 512-517.
|
[3] |
王敬, 齐向生, 刘慧卿, 等. 缝洞型油藏水驱剩余油形成机制及换向注水增油机理[J]. 石油勘探与开发, 2022, 49(5): 965-976.
|
[4] |
贾德利, 刘合, 张吉群, 等. 大数据驱动下的老油田精细注水优化方法[J]. 石油勘探与开发, 2020, 47(3): 629-636.
|
[5] |
刘合, 裴晓含, 贾德利, 等. 第四代分层注水技术内涵、应用与展望[J]. 石油勘探与开发, 2017, 44(4): 608-614.
|
[6] |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
|
[7] |
姚斌, 杨玲智, 于九政, 等. 波码通信数字式分层注水技术研究与应用[J]. 石油机械, 2020, 48(5): 71-77.
|
[8] |
岳元龙, 张鹤睿, 耿钦, 等. 基于管柱压力波的注水井无线通信方法[J]. 石油机械, 2021, 49(2): 81-87.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
杨玲智, 巨亚锋, 申晓莉, 等. 数字式分层注水流动特性研究与分析[J]. 石油机械, 2014, 42(10): 52-55.
|
[15] |
|
[16] |
|
[17] |
黄煜, 季飞, 温淼文, 等. 宏观尺度下的分子通信原型机综述[J]. 中国科学(信息科学), 2021, 51(12): 2016-2036.
|
/
〈 |
|
〉 |