速度-压力岩石物理模型及其在页岩孔隙压力预测中的应用
郭静怡(1994-),女,山东茌平人,美国德克萨斯A&M大学在读博士研究生,主要从事储集层地质与地球物理综合研究。地址:Halbouty Building, 3115 TAMU, 611 Ross St, College Station, TX 77843, USA。E-mail:guojingyi15@foxmail.com |
收稿日期: 2022-12-26
修回日期: 2023-02-16
网络出版日期: 2023-03-21
基金资助
TAMU(M1803964)
Rock physics model for velocity-pressure relations and its application to shale pore pressure estimation
Received date: 2022-12-26
Revised date: 2023-02-16
Online published: 2023-03-21
针对现有基于声波速度的经验公式进行地层压力预测时影响因素复杂的问题,应用弹性岩石物理模型来定量分析研究速度-压力关系的各种控制因素,提出孔构参数(γ)与压差之间的解析关系,并揭示压力对岩石体积模量和纵波速度等弹性性质的主控作用,进而准确预测孔隙压力。含气页岩中微裂缝及断裂发育时,异常高压下(高γ值)细小裂缝及扁平孔隙张开,岩石体积模量远低于其在静水压力下(低γ值)平均孔隙结构偏圆时的状态。结合岩心、测井及地震数据,利用此岩石物理压力关系刻画四川盆地丁山地区上奥陶统五峰组—下志留统龙马溪组页岩的孔隙压力三维空间分布变化,压力系数与含气量呈正相关,该预测结果与现场实测数据吻合较好。岩石物理压力关系的分析和方法的提出对非常规和常规油气田的勘探、生产和钻井安全都具有重要借鉴价值。
郭静怡 , 李敏 , 庄明伟 , 孙跃峰 . 速度-压力岩石物理模型及其在页岩孔隙压力预测中的应用[J]. 石油勘探与开发, 2023 , 50(2) : 360 -372 . DOI: 10.11698/PED.20220858
Acoustic wave velocity has been commonly utilized to predict subsurface geopressure using empirical relations. Acoustic wave velocity is, however, affected by many factors. To estimate pore pressure accurately, we here propose to use elastic rock physics models to understand and analyze quantitatively the various contributions from these different factors affecting wave velocity. We report a closed-form relationship between the frame flexibility factor (γ) in a rock physics model and differential pressure, which presents the major control of pressure on elastic properties such as bulk modulus and compressional wave velocity. For a gas-bearing shale with abundant micro-cracks and fractures, its bulk modulus is much lower at abnormally high pore pressure (high γ values) where thin cracks and flat pores are open than that at normal hydrostatic pressure (low γ values) where pores are more rounded in average. The developed relations between bulk modulus and differential pressure have been successfully applied to the Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in the Dingshan area of the Sichuan Basin to map the three-dimensional spatial distribution of pore pressure in the shale, integrating core, log and seismic data. The estimated results agree well with field measurements. Pressure coefficient is positively correlated to gas content. The relations and methods reported here could be useful for hydrocarbon exploration, production, and drilling safety in both unconventional and conventional fields.
[1] |
EIA. Permian Basin part 1 Wolfcamp, Bone Spring, Delaware shale plays of the Delaware Basin[R]. Washington, D.C.: U.S. Department of Energy, 2020.
|
[2] |
马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201.
|
[42] |
郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
|
[43] |
魏祥峰, 刘珠江, 王强, 等. 川东南丁山与焦石坝地区五峰组-龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
|
[44] |
|
[45] |
腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
EC. Field report on Dingshan shale gas reservoir[R]. Chengdu: Sinopec Exploration Company, 2021.
|
[75] |
|
[76] |
|
[77] |
|
/
〈 |
|
〉 |