油气田开发

碳酸盐岩储集层微裂缝的识别与表征

  • PERMADI Pudji ,
  • MARHAENDRAJANA Taufan ,
  • NANDYA Sesilia ,
  • IDEA Kharisma
展开
  • 1.万隆理工学院,万隆 40132,印度尼西亚;
    2.中国石油国际贾邦油田有限公司,雅加达 12940,印度尼西亚
PERMADI Pudji(1953-),男,印尼雅加达人,博士,万隆技术学院石油工程系教授,主要从事岩石学和提高采收率方面的教学和研究工作。地址:No. 10, Ganesa Street, Bandung, West Java, Indonesia。E-mail:pudji@tm.itb.ac.id

收稿日期: 2021-03-24

  网络出版日期: 2022-03-16

Identification and characterization of microfractures in carbonate samples

  • PERMADI Pudji ,
  • MARHAENDRAJANA Taufan ,
  • NANDYA Sesilia ,
  • IDEA Kharisma
Expand
  • 1. Petroleum Engineering, Bandung Institute of Technology, Bandung 40132, Indonesia;
    2. Petroleum Engineering, PetroChina International Jabung, Ltd., Jakarta 12940, Indonesia

Received date: 2021-03-24

  Online published: 2022-03-16

摘要

采用基于孔隙几何形状与结构的岩石分类方法,利用碳酸盐岩储集层A和碳酸盐岩储集层B岩石样品的常规岩心、特殊岩心分析数据和薄片照片,对岩石样品进行分类,识别并表征碳酸盐岩储集层岩石样品中的微裂缝。碳酸盐岩储集层A的各类岩石中均发育微裂缝;而碳酸盐岩储集层B中,只有孔隙度为1%~11%、孔洞较少、硬度为中硬—硬的部分类型岩石样品中发育微裂缝。建立确定各类岩石截止孔隙度的方法,以区分发育导流型微裂缝与不发育导流型微裂缝的岩石样品,分析导流型微裂缝在提高渗透率方面的作用。基于渗透率和初始含水饱和度的关系,结合基于孔隙几何形状与结构的岩石分类方程,筛选出发育导流型微裂缝的特殊岩心分析数据建立渗透率预测方程,成功预测了含有导流型微裂缝的岩石样品的渗透率。

本文引用格式

PERMADI Pudji , MARHAENDRAJANA Taufan , NANDYA Sesilia , IDEA Kharisma . 碳酸盐岩储集层微裂缝的识别与表征[J]. 石油勘探与开发, 2022 , 49(2) : 366 -376 . DOI: 10.11698/PED.2022.02.15

Abstract

Based on the rock typing method of pore geometry and structure (PGS), rock samples from carbonate reservoir A and carbonate reservoir B were classified using data of routine and special core analysis and thin section images, and microfractures in the carbonate reservoir samples were identified and characterized. Establishment of rock types demonstrates that microfractures have developed in all rock types in carbonate reservoir A, but only partially in certain rock types in carbonate reservoir B with porosity of 1%-11%, less vuggy, and hardness of medium hard to hard. The cut-off porosity was determined for each type of rock to distinguish samples with and without conductive microfractures. The impact of conductive microfractures on improving permeability was analyzed. On the basis of relationship of permeability and original water saturation, the permeability equation was derived by certain special core analysis data with conductive microfractures selected by PGS equation, and the permeability of samples with conductive microfractures has been successfully predicted.

参考文献

[1] KRANZ R L. Microcracks in rocks: A review[J]. Tectonophysics, 1983, 100(1/2/3): 449-480.
[2] ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures: A review[J]. Journal of Structural Geology, 2014, 69(Part B): 377-394.
[3] van GOLF-RACHT T D. Developments in petroleum science: Fundamentals of fractured reservoir engineering[M]. New York: Elsevier, 1982: 5-155.
[4] ZENG L. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1811-1825.
[5] LIU C, GUO Q, ZHANG R, et al. Characteristics and origin of microfracture in Lower Cretaceous tight sandstone from Kuqa foreland basin, NW China[R]. IPTC-16738-MS, 2013.
[6] LAUBACH S E. Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003, 87(4): 561-579.
[7] GAO Y, SHEN P, TU F. A study of pore structure by image processing method and its application[R]. SPE 14872-MS, 1986.
[8] GIES R M. An improved method for viewing micropore systems in rocks with the polarizing microscope[J]. SPE Formation Evaluation, 1987, 2(2): 209-214.
[9] RAMOS G G, RATHMELL J J. Effects of mechanical anisotropy on core strain measurements for in-situ stress determination[R]. SPE 19593-MS, 1989.
[10] MILLIKEN K L.The widespread occurrence of healed microfractures in siliciclastic rocks: Evidence from scanned cathodoluminescence imaging[R]. ARMA-1994-0825, 1994.
[11] LAUBACH S E, MILLIKEN K L.New fracture characterization methods for siliciclastic rocks[R]. ARMA-96-1209, 1996.
[12] GOMEZ L A, LAUBACH S E. Rapid digital quantification of microfracture populations[J]. Journal of Structural Geology, 2006, 28(3): 408-420.
[13] EZATI M, AZIZZADEH M, RIAHI M A, et al. Characterization of micro-fractures in carbonate Sarvak reservoir, using petrophysical and geological data, SW Iran[J]. Journal of Petroleum Science and Engineering, 2018, 170: 675-695.
[14] WIBOWO A S, PERMADI P. A type curve for carbonates rock typing[R]. IPTC-16663-MS, 2013.
[15] WIBOWO A S. Characterization of carbonate rocks based on pore geometry and structure[D]. Bandung: Institut Teknologi Bandung, 2014.
[16] LEVERETT M C. Capillary behavior in porous solids[J]. Transactions of the AIME, 1941, 142(1): 152-169.
[17] XIONG Y, HOU Z, TAN X, et al. Constraining fluid-rock interactions during eogenetic karst and their impacts on carbonate reservoirs: Insights from reactive transport modeling[J]. Applied Geochemistry, 2021, 131: 105050.
[18] LAPI I T B. A study of pressure maintenance and secondary recovery[R]. Bandung: Institut Teknologi Bandung, 2014.
[19] MUSU J T. Microscopic factors affecting pore geometry and structure and development of rock typing curve for sandstones[D]. Bandung: Institut Teknologi Bandung, 2018.
[20] PEITGEN H O, JÜRGENS H, SAUPE D. Chaos and fractals: New frontiers of science[M]. 2nd ed. New York: Springer, 2004: 182-191.
[21] SCHEIDEGGER A E. The physics of flow through porous media[M]. Toronto: University of Toronto Press, 1960: 112-133.
[22] EL-KHATIB N. Development of a modified capillary pressure J-function[R]. SPE 29890-MS, 1995.
[23] CARMEN P C. Fluid flow through granular beds[J]. Transactions of AIChE, 1937, 15: 150-166.
[24] WYLLIE M R J, GARDNER G H F. The generalized Kozeny- Carman equation, part 1: Review of existing theories[J]. World Oil, 1958, 146: 121-126.
[25] LUCIA F J, KERANS C, JENNINGS J W, Jr. Carbonate reservoir characterization[J]. Journal of Petroleum Technology, 2003, 55(6): 70-72.
[26] SMITH G A, PUN A. How does earth work? Physical geology and the process of science[M]. New York: Pearson, 2006: 34-36, 272-275.
[27] BROZ M E, COO R F, WHITNEY D L. Microhardness, toughness, and modulus of Mohs scale minerals[J]. American Mineralogist, 2006, 91(1): 135-142.
[28] TIMUR A. An investigation of permeability, porosity, and residual water saturation relationships[R]. SPWLA-1968-J, 1968.
[29] COATS G R, DUMANOIR J L. A new approach to improved log-derived permeability[J]. The Log Analyst, 1974, 15: 17-31.
[30] TORSKAYA T S, JIN G D, TORRES-VERDIN C. Pore-level analysis of the relationship between porosity, irreducible water saturation, and permeability of clastic rocks[R]. SPE 109878-MS, 2007.
文章导航

/