[1] PETERS K E, WALTERS C C, MOLDOWAN J M. The Biomarker Guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. Cambridge: Cambridge University Press, 2005.
[2] DUTKIEWICZ A, RASMUSSEN B, BUICK R. Oil preserved in fluid inclusions in Archaean sandstones[J]. Nature, 1998, 395(6705): 885-888.
[3] JACKSON M J, POWELL T G, SUMMONS R E, et al. Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7×109 years[J]. Nature, 1986, 322(6081): 727-729.
[4] BOIS C, BOUCHE P, PELET R. Global geologic history and distribution of hydrocarbon reserves[J]. AAPG Bulletin, 1982, 66(9): 1248-1270.
[5] MILLER R G. The global oil system: The relationship between oil generation, loss, half-life, and the world crude oil resource[J]. AAPG Bulletin, 1992, 76(4): 489-500.
[6] KLEMME H D, ULMISHEK G F. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors[J]. AAPG Bulletin, 1991, 75(12): 1809-1851.
[7] NALIVKIN V D, GOL’DBERG I S, KRUGLIKOV N M, et al. Destructive processes affecting oil and gas pools and estimation of the hydrocarbon loss[J]. International Geology Review, 1984, 26(10): 1185-1198.
[8] MACGREGOR D S. Factors controlling the destruction or preservation of giant light oilfields[J]. Petroleum Geoscience, 1996, 2(3): 197-217.
[9] ZHU G Y, ZHANG S C, LIU K Y, et al. A well-preserved 250 million-year-old oil accumulation in the Tarim Basin, western China: Implications for hydrocarbon exploration in old and deep basins[J]. Marine and Petroleum Geology, 2013, 43: 478-488.
[10] BEHAR F, KRESSMANN S, RUDKIEWICZ J L, et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/3): 173-189.
[11] PEPPER A S, DODD T A. Simple kinetic models of petroleum formation. Part II: Oil-gas cracking[J]. Marine and Petroleum Geology, 1995, 12(3): 321-340.
[12] ZHU G Y, ZHANG S C, SU J, et al. The occurrence of ultra-deep heavy oils in the Tabei Uplift of the Tarim Basin, NW China[J]. Organic Geochemistry, 2012, 52: 88-102.
[13] 李建忠, 陶小晚, 白斌, 等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021, 48(1): 52-67.
LI Jianzhong, TAO Xiaowan, BAI Bin, et al. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 2021, 48(1): 52-67.
[14] 魏国齐, 朱永进, 郑剑锋, 等. 塔里木盆地寒武系盐下构造-岩相古地理、规模源储分布与勘探区带评价[J]. 石油勘探与开发, 2021, 48(6): 1114-1126.
WEI Guoqi, ZHU Yongjin, ZHENG Jianfeng, et al. Tectonic-lithofacies paleogeography, large-scale source-reservoir distribution and exploration zones of Cambrian subsalt formation, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1114-1126.
[15] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.
DING Zhiwen, WANG Rujun, CHEN Fangfang, et al. Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in in South Tahe area of Halahatang oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296.
[16] 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469.
JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469.
[17] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.
JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.
[18] 顾忆, 万旸璐, 黄继文, 等. “大埋深、高压力”条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164.
GU Yi, WAN Yanglu, HUANG Jiwen, et al. Prospects for ultra-deep oil and gas in the “deep burial and high pressure” Tarim Basin[J]. Petroleum Geology and Experiment, 2019, 41(2): 157-164.
[19] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
[20] YANG P, LIU K Y, LIU J L, et al. Petroleum charge history of deeply buried carbonate reservoirs in the Shuntuoguole Low Uplift, Tarim Basin, West China[J]. Marine and Petroleum Geology, 2021, 128: 105063.
[21] GOLDSTEIN R H, REYNOLDS T J. Systematics of fluid inclusions in diagenetic minerals[M]. Broken Arrow: SEPM Society for Sedimentary Geology, 1994.
[22] THIÉRY R, PIRONON J, WALGENWITZ F, et al. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: Inferences from applied thermodynamics of oils[J]. Marine and Petroleum Geology, 2002, 19(7): 847-859.
[23] LI K K, GEORGE S C, CAI C F, et al. Fluid inclusion and stable isotopic studies of thermochemical sulfate reduction: Upper Permian and Lower Triassic gasfields, northeast Sichuan Basin, China[J]. Geochimica et Cosmochimica Acta, 2019, 246: 86-108.
[24] LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376(6): 76-83.
[25] ROBERTS N M W, WALKER R J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534.
[26] NURIEL P, WEINBERGER R, KYLANDER-CLARK A R C, et al. The onset of the Dead Sea transform based on calcite age-strain analyses[J]. Geology, 2017, 45(7): 587-590.
[27] GODEAU N, DESCHAMPS P, GUIHOU A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. Geology, 2018, 46(3): 247-250.
[28] YANG P, LIU K Y, LI Z, et al. Direct dating Paleo-fluid flow events in sedimentary basins[J]. Chemical Geology, 2022, 588: 120642.
[29] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.
QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51.
[30] HUANG H P, ZHANG S C, SU J. Geochemistry of tri- and tetracyclic terpanes in the Palaeozoic oils from the Tarim Basin, northwest China[J]. Energy & Fuels, 2015, 29(11): 7014-7025.
[31] ZHU G Y, CHEN F R, WANG M, et al. Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
[32] YU S, PAN C C, WANG J J, et al. Molecular correlation of crude oils and oil components from reservoir rocks in the Tazhong and Tabei uplifts of the Tarim Basin, China[J]. Organic Geochemistry, 2011, 42(10): 1241-1262.
[33] ROBERTS N M W, RASBURY E T, PARRISH R R, et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807-2814.
[34] VERMEESCH P. Isoplot R: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479-1493.
[35] EADINGTON P J, LISK M, KRIEGER F W. Identifying oil well sites: United States patent 5543616[P].1996-08-06.
[36] BODNAR R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684.
[37] DIDYK B M, SIMONEIT B R T, BRASSELL S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222.
[38] CONNAN J, CASSOU A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1-23.
[39] HUANG W Y, MEINSCHEIN W G. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745.
[40] HUGHES W B, HOLBA A G, DZOU L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
[41] RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the Western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10.
[42] KVALHEIM O M, CHRISTY A A. TELNÆS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888.
[43] RADKE M, WELTE D H. The Methylphenanthrene Index (MPI): A maturity parameter based on aromatic hydrocarbons[M]//BJOROY M. Advances in Organic Geochemistry 1981. Hoboken: John Wiley and Sons Limited, 1983: 504-512.
[44] BOREHAM C J, CRICK I H, POWELL T G. Alternative calibration of the Methylphenanthrene Index against vitrinite reflectance: Application to maturity measurements on oils and sediments[J]. Organic Geochemistry, 1988, 12(3): 289-294.
[45] MCLIMANS R K. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs[J]. Applied Geochemistry, 1987, 2(5/6): 585-603.
[46] CHENG B, LIU H, CAO Z C, et al. Origin of deep oil accumulations in carbonate reservoirs within the north Tarim Basin: Insights from molecular and isotopic compositions[J]. Organic Geochemistry, 2020, 139: 103931.
[47] 马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753.
MA Anlai, JIN Zhijun, LI Huili, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of North Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
[48] LI D X, YANG S F, CHEN H L, et al. Late Carboniferous crustal uplift of the Tarim plate and its constraints on the evolution of the Early Permian Tarim Large Igneous Province[J]. Lithos, 2014, 204: 36-46.
[49] XU Y G, WEI X, LUO Z Y, et al. The early Permian Tarim large igneous province: Main characteristics and a plume incubation model[J]. Lithos, 2014, 204: 20-35.
[50] PING H W, CHEN H H, THIÉRY R, et al. Effects of oil cracking on fluorescence color, homogenization temperature and trapping pressure reconstruction of oil inclusions from deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 80: 538-562.
[51] HIRSCHBERG A, DE JONG L N J, SCHIPPER B A, et al. Influence of temperature and pressure on asphaltene flocculation[J]. Society of Petroleum Engineers Journal, 1984, 24(3): 283-293.
[52] HAMMAMI A, PHELPS C H, MONGER-MCCLURE T, et al. Asphaltene precipitation from live oils: An experimental investigation of onset conditions and reversibility[J]. Energy & Fuels, 2000, 14(1): 14-18.
[53] PING H W, LI C Q, CHEN H H, et al. Overpressure release: Fluid inclusion evidence for a new mechanism for the formation of heavy oil[J]. Geology, 2020, 48(8): 803-807.
[54] PIRONON J.成油环境中的流体包裹体: 分析步骤与PTX重建[J]. 岩石学报, 2004, 20(6): 1333-1342.
PIRONON J. Fluid inclusions in petroleum environments: Analytical procedure for PTX Reconstruction[J]. Acta Petrologica Sinica, 2004, 20(6): 1333-1342.
[55] NEDKVITNE T, KARLSEN D A, BJØRLYKKE K, et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea[J]. Marine and Petroleum Geology, 1993, 10(3): 255-270.
[56] KARLSEN D A, NEDKVITNE T, LARTER S R, et al. Hydrocarbon composition of authigenic inclusions: Application to elucidation of petroleum reservoir filling history[J]. Geochimica et Cosmochimica Acta, 1993, 57(15): 3641-3659.
[57] LARSON L T, MILLER J D, NADEAU J E, et al. Two sources of error in low temperature inclusion homogenization determination, and corrections on published temperatures for the East Tennessee and Laisvall deposits[J]. Economic Geology, 1973, 68(1): 113-116.
[58] PREZBINDOWSKI D R, TAPP J B. Dynamics of fluid inclusion alteration in sedimentary rocks: A review and discussion[J]. Organic Geochemistry, 1991, 17(2): 131-142.
[59] BOURDET J, PIRONON J, LEVRESSE G, et al. Petroleum type determination through homogenization temperature and vapour volume fraction measurements in fluid inclusions[J]. Geofluids, 2008, 8(1): 46-59.
[60] LIN C S, YANG H J, LIU J Y, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: Significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46: 1-19.
[61] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.
JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839.
[62] 张俊, 庞雄奇, 刘洛夫, 等. 塔里木盆地志留系沥青砂岩的分布特征与石油地质意义[J]. 中国科学: 地球科学, 2004, 34(S1): 169-176.
ZHANG Jun, PANG Xiongqi, LIU Luofu, et al. Distribution characteristics and petroleum geological significance of the Silurian asphaltic sandstones in Tarim Basin[J]. SCIENCE CHINA Earth Sciences, 2004, 47(S2): 199-208.
[63] 陈红汉, 吴悠, 丰勇, 等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014, 35(6): 806-819.
CHEN Honghan, WU You, FENG Yong, et al. Timing and chronology of hydrocarbon charging in the Ordovician of Tahe oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2014, 35(6): 806-819.
[64] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12.
GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology and Experiment, 2020, 42(1): 1-12.
[65] 田鹏, 马庆佑, 吕海涛. 塔里木盆地北部跃参区块走滑断裂对油气成藏的控制[J]. 石油实验地质, 2016, 38(2): 156-161.
TIAN Peng, MA Qingyou, LYU Haitao. Strike-slip faults and their controls on hydrocarbon reservoirs in the Yuecan block of the Northern Tarim Uplift, Tarim Basin[J]. Petroleum Geology and Experiment, 2016, 38(2): 156-161.
[66] 李慧莉, 邱楠生, 金之钧, 等. 塔里木盆地的热史[J]. 石油与天然气地质, 2005, 26(5): 613-617.
LI Huili, QIU Nansheng, JIN Zhijun, et al. Geothermal history of Tarim Basin[J]. Oil & Gas Geology, 2005, 26(5): 613-617.
[67] 刘雨晨, 邱楠生, 常健, 等. 碳酸盐团簇同位素在沉积盆地热演化中的应用: 以塔里木盆地顺托果勒地区为例[J]. 地球物理学报, 2020, 63(2): 597-611.
LIU Yuchen, QIU Nansheng, CHANG Jian, et al. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: A case study of Shuntuoguole area in the Tarim Basin[J]. Chinese Journal of Geophysics, 2020, 63(2): 597-611.