油气勘探

乍得Doseo走滑反转盆地油气成藏特征和勘探发现

  • 窦立荣 ,
  • 肖坤叶 ,
  • 杜业波 ,
  • 王利 ,
  • 张新顺 ,
  • 程顶胜 ,
  • 胡瑛
展开
  • 1.中国石油勘探开发研究院,北京 100083;
    2.中国石油国际勘探开发有限公司,北京 100034
窦立荣(1965-),男,江苏扬州人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事全球油气资源评价与海外重点领域油气勘探关键技术研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院,邮政编码:100083。E-mail:dlirong@petrochina.com.cn

收稿日期: 2021-09-24

  网络出版日期: 2022-03-16

基金资助

国家科技重大专项“海外重点探区目标评价与未来领域选区选带研究”(2016ZX05029005); 中国石油天然气集团有限公司科学研究与技术开发项目“海外重点领域油气勘探关键技术”(2021DJ31)

Exploration discovery and hydrocarbon accumulation characteristics of the Doseo strike-slip and inverted basin, Chad

  • DOU Lirong ,
  • XIAO Kunye ,
  • DU Yebo ,
  • WANG Li ,
  • ZHANG Xinshun ,
  • CHENG Dingsheng ,
  • HU Ying
Expand
  • 1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China;
    2. China National Oil and Gas Exploration and Development Corporation, Beijing 100034, China

Received date: 2021-09-24

  Online published: 2022-03-16

摘要

在乍得Doseo盆地经历多家国际油公司30多年勘探才获得重大突破。基于大量地震和钻井新资料,对盆地构造沉积及油气地质特征进行梳理,系统分析油气成藏条件与富集规律,优选有利区带指导勘探实践。综合研究认为,该盆地是在中非剪切带前寒武系结晶基底上发育的中新生代湖相裂谷盆地,为受北部边界走滑断层控制的箕状断陷,具有两坳一隆一斜坡的构造格局。白垩纪盆地发育两期裂谷,始新世发生强烈反转,抬升剥蚀厚度达到800~1 000 m,之后进入拗陷-消亡期。边界断层为先正后逆的反转断层,盆内以正断层和走滑断层为主,构造样式包括花状构造、挤压背斜、断鼻和复杂断块等。盆内以早白垩世沉积为主,自下而上发育Mangara群、Kedeni组、Doba组、Koumra组,划分为两个水进-水退旋回,以湖泊-河流-三角洲/辫状河三角洲/扇三角洲相砂-泥岩沉积为主;有效烃源岩为下白垩统深湖相泥岩,有机质以Ⅰ—Ⅱ1型为主;盆内主要圈闭类型为断层复杂化的反转背斜和断块。Kedeni低凸起是最有利勘探区带,其次是北部陡坡带和南部斜坡带,断层侧向封堵性控制油气丰度。

本文引用格式

窦立荣 , 肖坤叶 , 杜业波 , 王利 , 张新顺 , 程顶胜 , 胡瑛 . 乍得Doseo走滑反转盆地油气成藏特征和勘探发现[J]. 石油勘探与开发, 2022 , 49(2) : 215 -223 . DOI: 10.11698/PED.2022.02.01

Abstract

Several international oil companies had conducted petroleum exploration, but failed to make any commercially viable discoveries in the Doseo Basin for over 30 years. An integrated analysis of hydrocarbon accumulation and enrichment in the basin based on the latest seismic and drilling data combined with exploration practice, tectonic sedimentation and petroleum geological characteristics was completed to find the potential petroleum plays. The Doseo Basin in Chad is a Meso-Cenozoic lacustrine rift basin developed on the Precambrian crystalline basement in the Central African Shear Zone. It is a half graben rift controlled by the strike-slip fault at the northern boundary, and can be divided into two subbasins, an uplift and a slope. The basin experienced two rifting periods in the Cretaceous and was strongly inverted with the erosion thickness of 800-1000 m during the Eocene, and then entered the depression and extinction period. Normal faults and strike-slip faults are developed in the basin, and the boundary faults are inverted faults. The main structural style includes compressed anticlines, fault noses, complex fault-blocks and flower structures. The Lower Cretaceous is the main sedimentary strata, which are divided into the Mangara Group, Kedeni, Doba and Koumra Formations from bottom up. Two transgressive-regressive cycles developed in the Lower Cretaceous with mainly lacustrine, river, deltal, braided river delta, fan delta facies sandstone and mudstone. The effective source rock in the basin is the Lower Cretaceous deep lacustrine mudstone with the type I and type II1 organic matter. Inverted anticlines and fault complicated blocks are the main trap types. The Kedeni Uplift is the most favorable play, followed by the Northern Steep Slope and Southern Gentle Slope. Lateral sealing capacity of faults controls the hydrocarbon abundance.

参考文献

[1] BUMBY A J, GUIRAUD R. The geodynamic setting of the Phanerozoic basins of Africa[J]. Journal of African Earth Sciences, 2005, 43(1/3): 1-12.
[2] GENIK G. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic[J]. AAPG Bulletin, 1993, 77(8): 1405-1434.
[3] IHS. Exploration, production, and midstream information[M]. https://my.ihs.com/Energy;IHS. 2014.
[4] GENIK G J. Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.)[J]. Tectonophysics, 1992, 213(1/2): 169-185.
[5] GUIRAUD R, BOSWORTH W, THIERRY J, et al. Phanerozoic geological evolution of Northern and Central Africa: An overview[J]. Journal of African Earth Sciences, 2005, 43(1/3): 83-143.
[6] GUIRAUD R, BOSWORTH W. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate-scale tectonics[J]. Tectonophysics, 1997, 282(1/4): 39-82.
[7] PATTERSON P E, SKELLY R L, JONES C R. Climatic controls on depositional setting and alluvial architecture, Doba Basin, Chad[M]//BAGANZ O W, BARTOV Y, BOHACS K M, et al. AAPG Memoir 95: Lacustrine Sandstone Reservoirs and Hydrocarbon Systems. Tulsa: American Association of Petroleum Geologists, 2012: 265-298.
[8] GUIRAUD R, MAURIN J C. Early Cretaceous rifts of Western and Central Africa: An overview[J]. Tectonophysics, 1992, 213(1/2): 153-168.
[9] 张艺琼, 何登发, 童晓光. 中非剪切带含油气盆地成因机制与构造类型[J]. 石油学报, 2015, 36(10): 1234-1247.
ZHANG Yiqiong, HE Dengfa, TONG Xiaoguang. Genetic mechanisms and tectonic types of petroliferous basins in the Central Africa Shear Zone[J]. Acta Petrolei Sinica, 2015, 36(10): 1234-1247.
[10] 窦立荣. 苏丹迈努特盆地油气成藏机理和成藏模式[J]. 矿物岩石地球化学通报, 2005, 24(1): 50-57.
DOU Lirong. Formation mechanism and model of oil and gas accumulations in the Melut Basin, Sudan[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(1): 50-57.
[11] 窦立荣, 潘校华, 田作基, 等. 苏丹裂谷盆地油气藏的形成与分布: 兼与中国东部裂谷盆地对比分析[J]. 石油勘探与开发, 2006, 33(3): 255-261.
DOU Lirong, PAN Xiaohua, TIAN Zuoji, et al. Hydrocarbon formation and distribution of rift basins in Sudan-A comparative analysis of them with rift basins in East China[J]. Petroleum Exploration and Development, 2006, 33(3): 255-261.
[12] 窦立荣, 肖坤叶, 王景春, 等. 强反转裂谷盆地石油地质与勘探实践[M]. 北京: 石油工业出版社, 2018.
DOU Lirong, XIAO Kunye, WANG Jingchun, et al. Petroleum geology and exploration practice in strong inversion rift basin[M]. Beijing: Petroleum Industry Press, 2018.
[13] 窦立荣, 肖坤叶, 胡勇, 等. 乍得Bongor盆地石油地质特征及成藏模式[J]. 石油学报, 2011, 32(3): 379-386.
DOU Lirong, XIAO Kunye, HU Yong, et al. Petroleum geology and a model of hydrocarbon accumulations in the Bongor Basin, the Republic of Chad[J]. Acta Petrolei Sinica, 2011, 32(3): 379-386.
[14] 张庆莲, 侯贵廷, 潘校华. 中西非裂谷系形成的动力学机制[J]. 地质力学学报, 2018, 24(2): 169-176.
ZHANG Qinglian, HOU Guiting, PAN Xiaohua. Dynamic mechanism of rift systems in West and Central Africa[J]. Journal of Geomechanics, 2018, 24(2): 169-176.
[15] 张光亚, 余朝华, 黄彤飞, 等. 非洲地区裂谷盆地类型及油气成藏特征[J]. 中国石油勘探, 2020, 25(4): 43-51.
ZHANG Guangya, YU Zhaohua, HUANG Tongfei, et al. Types and hydrocarbon accumulation characteristics of rift basins in Africa[J]. China Petroleum Exploration, 2020, 25(4): 43-51.
[16] 孔令武, 张树林, 韩文明, 等. 走滑—拉分盆地构造特征及盆地成因模式探讨: 以中非多赛奥盆地为例[J]. 高校地质学报, 2019, 25(5): 722-729.
KONG Lingwu, ZHANG Shulin, HAN Wenming, et al. Discussion on the structural features and formation mechanism of strike-slip pull-apart basin: A case study in the Doseo Basin, Central Africa[J]. Geological Journal of China Universities, 2019, 25(5): 722-729.
[17] 程顶胜, 窦立荣, 王景春, 等. 乍得Doseo盆地烃源岩评价与油源分析[J]. 地质学报, 2021, 95(11): 3413-3425.
CHENG Dingsheng, DOU Lirong, WANG Jingchun, et al. Source rocks evaluation and oil-source correlation of the Doseo Basin, Chad[J]. Acta Geologica Sinica, 2021, 95(11): 3413-3425.
[18] DEGENS E T. Biogeochemistry of stable carbon isotopes[M]// EGLINTON G, MURPHY M T J. Organic Geochemistry. Berlin, Heidelberg: Springer, 1969: 304-329.
[19] BURGOYNE P M, VAN WYK A E, ANDERSON J M, et al. Phanerozoic evolution of plants on the African plate[J]. Journal of African Earth Sciences, 2005, 43(1/3): 13-52.
[20] FAIRHEAD J D, GREEN C M, MASTERTON S M, et al. The role that plate tectonics, inferred stress changes and stratigraphic unconformities have on the evolution of the West and Central African Rift System and the Atlantic continental margins[J]. Tectonophysics, 2013, 594: 118-127.
[21] REYNOLDS D J, JONES C R. Tectonic evolution of the Doba and Doseo basins, Chad: Controls on trap formation and depositional setting of the three fields area, Chad[J]. American Association of Petroleum Geologists Bulletin, 2004, 88(Supplement): 15-16.
[22] DOU L R, WANG R C, WANG J C, et al. Thermal history reconstruction from apatite fission-track analysis and vitrinite reflectance data of the Bongor Basin, the Republic of Chad[J]. AAPG Bulletin, 2021, 105(5): 919-944.
[23] FAIRHEAD J D. The Mesozoic West and Central African Rift System: Qualitative evaluation[C]//AAPG International Conference and Exhibition 2008. Cape Town: AAPG, 2009: 30077.
[24] EL HASSAN W M, FARWA A G, AWAD M Z. Inversion tectonics in Central Africa Rift System: Evidence from the Heglig Field[J]. Marine and Petroleum Geology, 2017, 80: 293-306.
[25] 邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520.
WU Guanghui, MA Bingshan, HAN Jianfa, et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(3): 510-520.
[26] EL HASSAN W M, EL NADI A H H. Impact of inversion tectonics on hydrocarbon entrapment in the Baggara Basin, western Sudan[J]. Marine and Petroleum Geology, 2015, 68(Part A): 492-497.
[27] 徐昉昊, 徐国盛, 刘勇, 等. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素[J]. 石油勘探与开发, 2020, 47(1): 98-109.
XU Fanghao, XU Guosheng, LIU Yong, et al. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu sag, East China Sea Basin[J]. Petroleum Exploration and Development, 2020, 47(1): 98-109.
[28] SUMERY N M, S L O, SALIM A. Lacustrine environment reservoir properties on sandstone minerals and hydrocarbon content: A case study on Doba Basin, southern Chad[J]. IOP Conference Series: Earth and Environmental Science, 2017, 88: 012005.
[29] ZHANG X S, XIAO K Y, WANG J C, et al. Organic geochemical characteristics of Lower Cretaceous source rocks and crude oils in Doseo Depression of Central African Rift System[J]. Journal of African Earth Sciences, 2021, 175: 104118.
[30] PRICE L C, BAKER C E. Suppression of vitrinite reflectance in amorphous rich kerogen-A major unrecognized problem[J]. Journal of Petroleum Geology, 1985, 8(1): 59-84.
[31] PETERS K E. Guidelines for evaluating petroleum source rock using programmed pyrolysis[J]. AAPG Bulletin, 1986, 70(3): 318-329.
文章导航

/