[1] 李月清. 石油资源日趋匮乏品质下降[J]. 中国石油企业, 2018, 12: 36-38.
LI Yueqing.The dearth of oil resource and the decrease of oil quality[J]. China Petroleum Enterprise, 2018, 12: 36-38.
[2] 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 2020, 41(12): 1445-1464.
JIA Chengzao.Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445-1464.
[3] 阎存章, 李鹭光, 王炳芳, 等. 北美地区页岩气勘探开发新进展[M]. 北京: 石油工业出版社, 2009.
YAN Cunzhang, LI Luguang, WANG Bingfang, et al.New developments and exploitations on shale gas in North America Area[M]. Beijing: Petroleum Industry Press, 2009.
[4] U. S. Energy Information Administration. Drilling productivity report[EB/OL]. (2021-08-16)[2021-09-10]. https://www.eia.gov/petroleum/drilling.
[5] FARHAN A, RAJ M, ROHANN J, et al.Stacked pay pad development in the Midland Basin[R]. SPE 187496-MS, 2017.
[6] JILL T, NICK F, MARC S, et al.Tank development in the Midland Basin, Texas: A case study of super-charging a reservoir to optimize production and increase horizontal well densities[R]. URTeC 2902895-MS, 2018.
[7] TAHIR S, AL KINDI S, GHORAYEB K, et al.A top - down view of field development plans, integrated reservoir performance and production sustainability assurance[R]. SPE 197379-MS, 2019.
[8] DADDIPATI M, KARACAER C, OZGEN C, et al.Overcoming the limitations of SRV concept[R]. URTeC 3221-MS, 2020.
[9] Carrizo Oil & Gas, Inc. Carrizo Oil & Gas reports initial multiple-bench Niobrara downspacing results and provides Utica update[EB/OL]. (2014-06-18)[2021-09-10]. https://www.globenewswire.com/en/news-release/2014/06/18/644972/28425/en/Carrizo-Oil-Gas-Reports-Initial-Multiple-Bench-Niobrara-Downspacing-Results-and-Provides-Utica-Update.html.
[10] ISHANK G, CHANDRA R, DEEPAK D, et al.Fracture hits in unconventional reservoirs: A critical review[R]. SPE 203839-PA, 2021.
[11] ZHU J, FORREST J, XIONG H, et al.Cluster spacing and well spacing optimization using multi-well simulation for the lower Sprayberry Shale in Midland Basin[R]. SPE 187485-MS, 2017.
[12] XIONG H, WU W, GAO S.Optimizing well completion design and well spacing with integration of advanced multi-stage fracture modeling & reservoir simulation: A Permian basin case study[R]. SPE 189855-MS, 2018.
[13] SCHOFIELD J, RODRIGUEZ A, GARCIA T X.Optimization of well pad & completion design for hydraulic fracture stimulation in unconventional reservoirs[R]. SPE 174332-MS, 2015.
[14] FENG Q, XU S, XING X, et al.Advances and challenges in shale oil development: A critical review[J]. Advances in Geo-Energy Research, 2020, 4(4): 406-418.
[15] GEORGE E, RANDY L.Well integrity for fracturing and refracturing: What is needed and why?[R]. SPE 179120-MS, 2016.
[16] ZHANG J, WHITE M, MCEWEN, et al. Investigating near-wellbore diversion methods for refracturing horizontal wells[R]. SPE 199703-PA, 2020.
[17] KILIAN L.The impact of the shale oil revolution on US oil and gasoline prices[J]. Review of Environmental Economics and Policy, 2016, 10(2): 185-205.
[18] KELVIN A, JOHN Y, DEREK E, et al.Laboratory evaluation of multiphase permeability evolution in tight sandstones: Impact of slickwater and friction reducers[R]. SPE 180250-MS, 2016.
[19] JACOBS T.Shale sector’s switch to slickwater highlights compatibility issues with produced water[J]. Journal of Petroleum Technology, 2019, 71(1): 31-32.
[20] HOWARD M, MICHAEL M, KARN A.Shale frac designs move to just-good-enough proppant economics[R]. SPE 199751-MS, 2020.
[21] WEIJERS L, WRIGHT C, MAYERHOFER M, et al.Trends in the North American Frac industry: Invention through the Shale Revolution[R]. SPE 194345-MS, 2019.
[22] OLMEN D, ANSCHUTZ A, BRANNON D, et al.Evolving proppant supply and demand: The implications on the hydraulic fracturing industry[R]. SPE 191591-MS, 2018.
[23] SCHULTZ R, SKOUMAL R, BRUDZINSKI M, et al.Hydraulic fracturing‐induced seismicity[J]. Reviews of Geophysics, 2020, 58(3): 1-43.
[24] 雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 168-175.
LEI Qun, GUAN Baoshan, CAI Bo, et al.Technological progress and prospects of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 168-175.
[25] BILGILI F, KOCAK E, BULUT Ü.The shale gas production and economic growth in local economies across the US[J]. Environmental Science and Pollution Research, 2020, 27(11): 12001-12016.
[26] 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887.
XU Yun, LEI Qun, CHEN Ming, et al.Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-887.
[27] 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气“十三五”发展成果与展望[J]. 石油与天然气地质, 2021, 42(1): 16-27.
CAI Xunyu, ZHAO Peirong, GAO Bo, et al.Sinopec’s shale gas development achievements during the “Thirteenth Five-Year Plan” period and outlook for the future[J]. Oil and Natural Gas Geology, 2021, 42(1): 16-27.
[28] 王燚钊, 侯冰, 王栋, 等. 页岩油多储集层穿层压裂缝高扩展特征[J]. 石油勘探与开发, 2021, 48(2): 402-410.
WANG Yizhao, HOU Bing, WANG Dong, et al.Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs[J]. Petroleum Exploration and Development, 2021, 48(2): 402-410.
[29] 雷群, 翁定为, 管保山, 等. 基于缝控压裂优化设计的致密油储集层改造方法[J]. 石油勘探与开发, 2020, 47(3): 592-599.
LEI Qun, WENG Dingwei, GUAN Baoshan, et al.A novel approach of tight oil reservoirs stimulation based on fracture controlling optimization and design[J]. Petroleum Exploration and Development, 2020, 47(3): 592-599.
[30] 白晓虎, 齐银, 何善斌, 等. 致密储集层水平井压裂-补能-驱油一体化重复改造技术[J]. 断块油气田, 2021, 28(1): 63-67.
BAI Xiaohu, QI Yin, HE Shanbin, et al.Integrated re-stimulating technology of fracturing-replenishment-displacement of horizontal wells in tight reservoirs[J]. Fault-Block Oil and Gas Field, 2021, 28(1): 63-67.
[31] 雷群, 杨立峰, 段瑶瑶, 等. 非常规油气“缝控储量”改造优化设计技术[J]. 石油勘探与开发, 2018, 45(4): 719-726.
LEI Qun, YANG Lifeng, DUAN Yaoyao, et al.The “fracture- controlled reserves” based stimulation technology for unconventional oil and gas reservoirs[J]. Petroleum Exploration and Development, 2018, 45(4): 719-726.
[32] 张斌, 李磊, 邱勇潮, 等. 电驱压裂设备在页岩气储层改造中的应用[J]. 天然气工业, 2020, 40(5): 50-57.
ZHANG Bin, LI Lei, QIU Yongchao, et al.Application of electric drive fracturing equipment in shale gas reservoir stimulation[J]. Natural Gas Industry, 2020, 40(5): 50-57.
[33] 朱玉杰, 刘晓平, 魏辽. 水平井延时启动趾端滑套关键技术研究[J]. 钻采工艺, 2019, 42(3): 80-83.
ZHU Yujie, LIU Xiaoping, WEI Liao.Research on key technology of time-delayed activation of toe sleeve in horizontal well[J]. Drilling & Production Technology, 2019, 42(3): 80-83.
[34] 郑新权, 王欣, 杨能宇, 等. 国内石英砂支撑剂评价及砂源本地化研究进展与前景展望[J]. 中国石油勘探, 2021, 26(1): 131-137.
ZHENG Xinquan, WANG Xin, YANG Nengyu, et al.Domestic sand proppant evaluation and research progress of sand source localization and its prospects[J]. China Petroleum Exploration, 2021, 26(1): 131-137.
[35] 刘倩, 管保山, 刘玉婷, 等. 滑溜水压裂液用降阻剂的研究与应用进展[J]. 油田化学, 2020, 37(3): 545-551.
LIU Qian, GUAN Baoshan, LIU Yuting, et al.Progress of development and application of drag reduction agents for slick-water fracturing[J]. Oilfield Chemistry, 2020, 37(3): 545-551.
[36] 焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 279(6): 5-16.
JIAO Fangzheng, ZOU Caineng, YANG Zhi.Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 279(6): 5-16.
[37] 李国欣, 吴志宇, 李桢, 等. 陆相源内非常规石油甜点优选与水平井立体开发技术实践: 以鄂尔多斯盆地延长组7段为例[J]. 石油学报, 2021, 42(6): 736-750.
LI Guoxin, WU Zhiyu, LI Zhen, et al.Optimal selection of unconventional petroleum sweet spots inside continental source kitchens and actual application of three-dimensional development technology in horizontal wells: A case study of the Member 7 of Yanchang Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2021, 42(6): 736-750.
[38] 雷群, 翁定为, 熊生春, 等. 中国石油页岩油储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2021, 48(5): 168-175.
LEI Qun, WENG Dingwei, XIONG Shengchun, et al.Progress and development directions of shale oil stimulation technology of China National Petroleum Corporation[J]. Petroleum Exploration and Development, 2021, 48(5): 168-175.
[39] 胥云, 陈铭, 吴奇, 等. 水平井体积改造应力干扰计算模型及其应用[J]. 石油勘探与开发, 2016, 43(5): 780-786.
XU Yun, CHEN Ming, WU Qi, et al.Stress interference calculation model and its application in volume stimulation of horizontal wells[J]. Petroleum Exploration and Development, 2016, 43(5): 780-786.
[40] 石林, 张鲲鹏, 慕立俊. 页岩油储层压裂改造技术问题的讨论[J]. 石油科学通报, 2020, 5(4): 496-511.
SHI Lin, ZHANG Kunpeng, MU Lijun.Discussion of hydraulic fracturing technical issues in shale oil reservoirs[J]. Petroleum Science Bulletin, 2020, 5(4): 496-511.
[41] 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 1-11.
SUN Longde, LIU He, HE Wenyuan, et al.An analysis of major scientific problems and research paths of Gulong Shale Oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 1-11.
[42] 张绍林, 孙强, 李涛, 等. 基于柔性钻具低成本超短半径老井侧钻技术[J]. 石油机械, 2017, 45(12): 18-22.
ZHANG Shaolin, SUN Qiang, LI Tao, et al.The low cost ultra-short radius sidetracking technology in produced wells based on flexible drill pipe[J]. China Petroleum Machinery, 2017, 45(12): 18-22.
[43] 徐峰阳, 刘成双, 陈宁. 短曲率半径水平钻孔取心技术研究及试验[J]. 钻采工艺, 2021, 44(2): 26-28, 37.
XU Fengyang, LIU Chengshuang, CHEN Ning.Research and test on coring technology of horizontal borehole with short curvature radius[J]. Drilling & Production Technology, 2021, 44(2): 26-28, 37.
[44] 雷群, 李益良, 李涛, 等. 中国石油修井作业技术现状及发展方向[J]. 石油勘探与开发, 2020, 47(1): 155-162.
LEI Qun, LI Yiliang, LI Tao, et al.Technical status and development direction of workover operation of PetroChina[J]. Petroleum Exploration and Development, 2020, 47(1): 155-162.