在考虑动态接触角效应、纳米限域效应、惯性效应和入口端效应的基础上,建立了纳米尺度孔隙中油-水渗吸方程,推导出固-油-水三相接触线摩擦系数与界面区流体黏度的关系式,结合毛细管束模型和对数正态分布理论,得到了致密岩心渗吸模型,并对影响渗吸动态的关键参数进行了分析。研究表明,纳米孔隙渗吸过程中,动态接触角效应对渗吸的影响最为显著,纳米限域效应(多层黏附效应和滑脱效应)次之,惯性效应和入口端效应影响最小;渗吸初期,惯性力的作用减小,接触线摩擦力的作用增加,动态接触角从初始的平衡接触角逐渐增大至最大并基本保持稳定;渗吸后期,接触线摩擦力的作用减小,接触角则从最大动态接触角逐渐降低并趋于初始的平衡接触角;孔隙半径减小,渗吸初期动态接触角效应增强,渗吸中后期动态接触角效应减弱;油水界面张力增加,渗吸动力增大,动态接触角效应增强;界面张力对渗吸动态的影响存在临界值,致密储集层渗吸提高采收率,过低的界面张力并不能获得更好的渗吸效果,最佳的界面张力需通过优化获得。
The oil-water imbibition equation in the nano-scale pores considering the dynamic contact angle effect, nanoconfinement effect, inertia effect, and inlet end effect was established, and the relation between the friction coefficient of solid-oil-water three-phase contact line and the fluid viscosity in the interface zone was derived. In combination with the capillary bundle model and the lognormal distribution theory, the imbibition model of tight core was obtained and key parameters affecting imbibition dynamics were analyzed. The study shows that in the process of nanopore imbibition, the dynamic contact angle effect has the most significant impact on the imbibition, followed by nanoconfinement effect (multilayer sticking effect and slippage effect), and the inertia effect and inlet end effect have the least impact; in the initial stage of imbibition, the effect of inertial force decreases, and the effect of contact line friction increases, so the dynamic contact angle gradually increases from the initial equilibrium contact angle to the maximum and then remains basically stable; in the later stage of imbibition, the effect of contact line friction decreases, and the contact angle gradually decreases from the maximum dynamic contact angle and approaches the initial equilibrium contact angle; as the pore radius decreases, the dynamic contact angle effect increases in the initial stage of imbibition and decreases in the later stage of imbibition; as the oil-water interfacial tension increases, the imbibition power increases, and the dynamic contact angle effect increases; there is a critical value for the influence of interfacial tension on the imbibition dynamics. In improving oil recovery by imbibition in tight oil reservoir, interfacial tension too low cannot achieve good imbibition effect, and the best interfacial tension needs to be obtained through optimization.
[1] 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452.
JIA Chengzao, PANG Xiongqi, SONG Yan.The mechanism of unconventional hydrocarbon formation: Hydrocarbon self- containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452.
[2] TIAN W B, WU K L, GAO Y, et al.A critical review of enhanced oil recovery by imbibition: Theory and practice[J]. Energy & Fuels, 2021, 35(7): 5643-5670.
[3] AGHABARARI A, GHAEDI M, RIAZI M.采用新标度方程预测再渗吸作用下天然裂缝性储集层重力泄油采收率[J]. 石油勘探与开发, 2020, 47(6): 1212-1219.
AGHABARARI A, GHAEDI M, RIAZI M.Prediction of oil recovery in naturally fractured reservoirs subjected to reinfiltration during gravity drainage using a new scaling equation[J]. Petroleum Exploration and Development, 2020, 47(6): 1212-1219.
[4] 杨正明, 刘学伟, 李海波, 等. 致密储集层渗吸影响因素分析与渗吸作用效果评价[J]. 石油勘探与开发, 2019, 46(4): 739-745.
YANG Zhengming, LIU Xuewei, LI Haibo, et al.Analysis on the influencing factors of imbibition and the effect evaluation of imbibition in tight reservoirs[J]. Petroleum Exploration and Development, 2019, 46(4): 739-745.
[5] 于馥玮, 高振东, 朱文浩, 等. 基于微流控模型的裂缝性储集层渗吸机理实验[J]. 石油勘探与开发, 2021, 48(5): 1004-1013.
YU Fuwei, GAO Zhendong, ZHU Wenhao, et al.Experimental research on imbibition mechanisms of fractured reservoirs by microfluidic chips[J]. Petroleum Exploration and Development, 2021, 48(5): 1004-1013.
[6] WU K L, CHEN Z X, LI J, et al.Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3358-3363.
[7] SUPPLE S, QUIRKE N.Rapid imbibition of fluids in carbon nanotubes[J]. Physical Review Letters, 2003, 90(21): 214501.
[8] LUCAS R.Ueber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten[J]. Kolloid-Zeitschrift, 1918, 23(1): 15-22.
[9] FENG D, BAKHSHIAN S, WU K L, et al.Wettability effects on phase behavior and interfacial tension in shale nanopores[J]. Fuel, 2021, 290: 119983.
[10] FERNÁNDEZ-TOLEDANO J C, BLAKE T D, de CONINCK J. Contact-line fluctuations and dynamic wetting[J]. Journal of Colloid and Interface Science, 2019, 540: 322-329.
[11] BLAKE T D, HAYNES J M.Kinetics of liquid/liquid displacement[J]. Journal of Colloid and Interface Science, 1969, 30(3): 421-423.
[12] KELLY S, TORRES-VERDÍN C, BALHOFF M T. Anomalous liquid imbibition at the nanoscale: The critical role of interfacial deformations[J]. Nanoscale, 2016, 8(5): 2751-2767.
[13] GRUENER S, SADJADI Z, HERMES H E, et al.Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10245-10250.
[14] LIU J R, SHENG J J.Investigation of countercurrent imbibition in oil-wet tight cores using NMR technology[J]. SPE Journal, 2020, 25(5): 2601-2614.
[15] TIAN W B, WU K L, CHEN Z X, et al.Effect of dynamic contact angle on spontaneous capillary-liquid-liquid imbibition by molecular kinetic theory[J]. SPE Journal, 2021, 26(4): 2324-2339.
[16] WU K L, CHEN Z X, LI J, et al.Nanoconfinement effect on n-alkane flow[J]. The Journal of Physical Chemistry C, 2019, 123(26): 16456-16461.
[17] MAGGI F, ALONSO-MARROQUIN F.Multiphase capillary flows[J]. International Journal of Multiphase Flow, 2012, 42: 62-73.
[18] TIAN W B, WU K L, CHEN Z X, et al.Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory[J]. Journal of Colloid and Interface Science, 2020, 579: 470-478.
[19] BLAKE T D, BATTS G N.The temperature-dependence of the dynamic contact angle[J]. Journal of Colloid and Interface Science, 2019, 553: 108-116.
[20] POWELL R E, ROSEVEARE W E, EYRING H.Diffusion, thermal conductivity, and viscous flow of liquids[J]. Industrial and Engineering Chemistry, 1941, 33(4): 430-435.
[21] RAFIEE J, MI X, GULLAPALLI H, et al.Wetting transparency of graphene[J]. Nature Materials, 2012, 11(3): 217-222.
[22] RAMIASA M, RALSTON J, FETZER R, et al.The influence of topography on dynamic wetting[J]. Advances in Colloid and Interface Science, 2014, 206: 275-293.
[23] WANG H, SU Y L, WANG W D.Investigations on water imbibing into oil-saturated nanoporous media: Coupling molecular interactions, the dynamic contact angle, and the entrance effect[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1872-1883.
[24] BRUOT N, CAUPIN F.Curvature dependence of the liquid-vapor surface tension beyond the Tolman approximation[J]. Physical Review Letters, 2016, 116(5): 056102.
[25] FENG D, LI X F, WANG X Z, et al.Anomalous capillary rise under nanoconfinement: A view of molecular kinetic theory[J]. Langmuir, 2018, 34(26): 7714-7725.
[26] ZHANG T, LI X F, SUN Z, et al.An analytical model for relative permeability in water-wet nanoporous media[J]. Chemical Engineering Science, 2017, 174: 1-12.
[27] STROBERG W, KETEN S, LIU W K.Hydrodynamics of capillary imbibition under nanoconfinement[J]. Langmuir, 2012, 28(40): 14488-14495.
[28] REN X X, LI A F, MEMON A, et al.Experimental simulation on imbibition of the residual fracturing fluid in tight sandstone reservoirs[J]. Journal of Energy Resources Technology, 2019, 141(8): 082905.
[29] 王秀宇, 巨明霜, 杨文胜, 等. 致密油藏动态渗吸排驱规律与机理[J]. 油气地质与采收率, 2019, 26(3): 92-98.
WANG Xiuyu, JU Mingshuang, YANG Wensheng, et al.Dynamic imbibition principles and mechanism of tight oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 92-98.
[30] KATHEL P, MOHANTY K K.EOR in tight oil reservoirs through wettability alteration[R]. SPE 166281-MS, 2013.