[1] 马新华. 非常规天然气“极限动用”开发理论与实践[J]. 石油勘探与开发, 2021, 48(2): 326-336.
MA Xinhua.“Extreme utilization” development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336.
[2] 唐洪明, 朱柏宇, 王茜, 等. 致密砂岩气层水锁机理及控制因素研究[J]. 中国科学: 技术科学, 2018, 48(5): 537-547.
TANG Hongming, ZHU Boyu, WANG Qian, et al.Mechanism and control factors of water blocking in tight sandstone gas reservoir[J]. SCIENTIA SINICA Technologica, 2018, 48(5): 537-547.
[3] 游利军, 石玉江, 张海涛, 等. 致密砂岩气藏水相圈闭损害自然解除行为研究[J]. 天然气地球科学, 2013, 24(6): 1214-1219.
YOU Lijun, SHI Yujiang, ZHANG Haitao, et al.Spontaneous removal behavior of water phase trapping damage in tight sandstone gas reservoirs[J]. Natural Gas Geoscience, 2013, 24(6): 1214-1219.
[4] LI G.Clean up water blocking in gas reservoirs by microwave heating: Laboratory studies[R]. SPE 101072, 2006.
[5] 徐凌. PW低渗气藏解除水锁技术研究[D]. 成都: 西南石油大学, 2014.
XU Ling.Study on water locking technology of PW low permeability gas reservoir[D]. Chengdu: Southwest Petroleum University, 2014.
[6] KRISHNAMOORTI R.Extracting the benefits of nanotechnology for the oil industry[J]. Journal of Petroleum Technology, 2006, 58(11): 24-26.
[7] 李龙, 孙金声, 刘勇, 等. 纳米材料在钻井完井流体和油气层保护中的应用研究进展[J]. 油田化学, 2013, 30(1): 139-144.
LI Long, SUN Jinsheng, LIU Yong, et al.Recent progress of application of nanomaterials in drilling/completion fluids and reservoir protection[J]. Oilfield Chemistry, 2013, 30(1): 139-144.
[8] 王建, 封卫强, 袁浩仁. 纯化油田低渗透砂岩油藏解除水锁伤害研究[J]. 长江大学学报(自然科学版), 2011, 8(8): 54-56.
WANG Jian, FENG Weiqiang, YUAN Haoren.The research of water lock removal for low permeability sandstone reservoirs in Chunhua Oilfield[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(8): 54-56.
[9] 白芳林. 苏6井区气藏伤害因素分析及降低水锁伤害方法研究[D]. 西安: 西安石油大学, 2011.
BAI Fanglin.Su 6 well gas reservoir area and reduce the harm factor analysis method of water block damage[D]. Xi’an: Xi’an Shiyou University, 2011.
[10] MAHADEVAN J, SHARMA M M.Water removal from porous media by gas injection: Experiments and simulation[J]. Transport in Porous Media, 2007, 66: 587-309.
[11] AL-ANAZI H A, WALKER J G, POPE G A, et al. A successful methanol treatment in a gas-condensate reservoir: Field application[R]. SPE 80901, 2003.
[12] ALZATE G A, FRANCO C A, RESTREPO A, et al.Evaluation of alcohol-based treatments for condensate banking removal[R]. SPE 98359, 2006.
[13] 熊钰, 莫军, 李佩斯, 等. 致密储层干化主剂筛选评价与配方研制[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 165-172.
XIONG Yu, MO Jun, LI Peisi, et al.Selection, evaluation, and formulation of drying agents for tight sand reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(1): 165-172.
[14] 李佩斯. 低渗致密气藏干化剂的研制与筛选[D]. 成都: 西南石油大学, 2018.
LI Peisi.Development and screening of drying agents for low permeability tight gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2018.
[15] 熊钰, 莫军, 李佩斯, 等. 致密储层束缚水干化反应及干化效应差异分析与评价[J]. 化学通报, 2018, 81(7): 646-652.
XIONG Yu, MO Jun, LI Peisi, et al.Analysis and evaluation of bound water drying reaction and drying effect in tight reservoir[J]. Chemistry, 2018, 81(7): 646-652.
[16] 莫军. 致密气藏干化剂配方优化及干化机理研究[D]. 成都: 西南石油大学, 2019.
MO Jun.Study on formula optimization and mechanism of drying agent for tight gas reservoir[D]. Chengdu: Southwest Petroleum University, 2019.
[17] 蒋红梅, 汤勇, 陈文, 等. 油气藏地层水蒸发产生盐析的研究新进展[J]. 钻采工艺, 2009, 32(5): 50-53.
JIANG Hongmei, TANG Yong, CHEN Wen, et al.Research on salting out during formation water evaporation in oil-gas reservoirs[J]. Drilling & Production Technology, 2009, 32(5): 50-53.
[18] KLEINITZ W, KOEHLER M, DIETZSCH G.The precipitation of salt in gas producing wells[R]. SPE 68953, 2001.
[19] ZULUAGA E, MMNOZ N I, OBANDO G A.An experimental study to evaluate water vaporization and formation damage caused by dry gas flow through porous media[R]. SPE 68335, 2001.
[20] 傅希桐. 致密气藏干化剂改进及配方优化研究[D]. 成都: 西南石油大学, 2020.
FU Xitong.Study on improvement and formulation optimization of drying agent for tight gas reservoir[D]. Chengdu: Southwest Petroleum University, 2020.
[21] 熊钰, 蒋军, 张烈辉, 等. 致密气藏干化处理用碳化铝超细粉末的复合改性研究[J]. 石油化工, 2017, 46(11): 66-69.
XIONG Yu, JIANG Jun, ZHANG Liehui, et al.Modification of the ultrafine Al4C3 powder used in the dry processing of the tight gas reservoir[J]. Petrochemical Technology, 2017, 46(11): 66-69.
[22] ZHANG L, JIANG J, XIONG Y.Delaying the effect of an aluminum carbide drying agent in a tight gas reservoir[J]. AIP Advances, 2018, 8(3): 035118.
[23] 熊钰, 莫军, 李佩斯, 等. 致密气藏储层干化剂在超临界CO2中的溶解性及增溶研究[J]. 化学研究与应用, 2019, 31(1): 72-78.
XIONG Yu, MO Jun, LI Peisi, et al.Study on solubility and solubilization of drying agent in supercritical carbon dioxide[J]. Chemical Research and Application, 2019, 31(1): 72-78.
[24] XIONG Y, FU X, MO J, et al.Study on solubility and solubilisation of drying agent in supercritical carbon dioxide for improving local permeability of tight gas reservoir[J]. Molecular Physics, 2019, 118(1): 1-12.
[25] XIONG W, ZHANG L, ZHAO Y, et al.A generalized equation of state for associating fluids in nanopores: Application to CO2-H2O, CH4-H2O, CO2-CH4, and CO2-CH4-H2O systems and implication for extracting dissolved CH4 by CO2 injection[J]. Chemical Engineering Science, 2021, 229: 116034.
[26] JIA C, WANG C, ZHANG L, et al.Predictions of entropy for diatomic molecules and gaseous substances[J]. Chemical Physics Letters, 2018, 692: 57-60.
[27] XIONG W, ZHAO Y, QIN J, et al.Phase equilibriarium modeling for confined fluids in nanopores using an association equation of state[J]. Journal of Supercritical Fluids, 2021, 169: 105118.
[28] 雷强. 核磁共振在线驱替定量表征多孔介质内干化效应和流动特征[R]. 成都: 第十一届全国低场核磁共振技术与应用研讨会, 2019.
LEI Qiang.The drying effect and flow characteristics in porous media were quantitatively characterized by NMR online displacement[R]. Chengdu: The 11th National Symposium on Low-field NMR Technology and Application, 2019.
[29] 赵玉龙, 刘香禺, 张烈辉, 等. 致密砂岩气藏气水流动规律及储层干化作用机理[J]. 天然气工业, 2020, 40(9): 70-79.
ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al.Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs[J]. Natural Gas Industry, 2020, 40(9): 70-79.
[30] LEI Q, ZHANG L, TANG H, et al.Quantitative study of different patterns of microscale residual water and their effect on gas permeability through digital core analysis[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108053.
[31] 刘香禺. 考虑储层干化效应的致密气藏流动模拟研究[D]. 成都: 西南石油大学, 2019.
LIU Xiangyu.Flow simulation of tight gas reservoir considering reservoir drying effect[D]. Chengdu: Southwest Petroleum University, 2019.
[32] 郭晶晶, 戴领, 张烈辉. 致密砂岩储层干化效果分析与评价[R]. 太原: 第十届全国天然气藏高效开发技术研讨会, 2019.
GUO Jingjing, DAI Ling, ZHANG Liehui.Analysis and evaluation of dryness effect of tight sandstone reservoir[R]. Taiyuan: The 10th National Symposium on Efficient Development Technology of Natural Gas Reservoir, 2019.
[33] 戴领. 干化对低渗砂岩储层渗流影响的实验研究[D]. 成都: 西南石油大学, 2019.
DAI Ling.Experimental study on the effect of drying on the seepage of low permeability sandstone reservoir[D]. Chengdu: Southwest Petroleum University, 2019.
[34] 赵玉龙, 刘香禺, 张烈辉, 等. 基于格子Boltzmann方法的非常规天然气微尺度流动基础模型[J]. 石油勘探与开发, 2021, 48(1): 156-165.
ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al.A basic model of unconventional gas microscale flow based on the lattice Boltzmann method[J]. Petroleum Exploration and Development, 2021, 48(1): 156-165.
[35] 张烈辉, 刘香禺, 赵玉龙, 等. 孔喉结构对致密气微尺度渗流特征的影响[J]. 天然气工业, 2019, 39(8): 50-57.
ZHANG Liehui, LIU Xiangyu, ZHAO Yulong, et al.Effect of pore throat structure on micro-scale seepage characteristics of tight gas reservoirs[J]. Natural Gas Industry, 2019, 39(8): 50-57.
[36] ZHAO Y, LIU L, ZHANG L, et al.Simulation of a multistage fractured horizontal well in a tight oil reservoir using an embedded discrete fracture model[J]. Energy Science & Engineering, 2019, 7(5): 1485-1503.
[37] ZHANG R, ZHANG L, WANG R, et al.Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow[J]. Journal of Geophysics and Engineering, 2018, 15(3): 877-894.