油气田开发

用于致密气提高采收率的储集层干化方法

  • 张烈辉 ,
  • 熊钰 ,
  • 赵玉龙 ,
  • 唐洪明 ,
  • 郭晶晶 ,
  • 贾春生 ,
  • 雷强 ,
  • 王秉合
展开
  • 1.西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500;
    2.中国石油玉门油田公司勘探开发研究院,甘肃玉门,735019
张烈辉(1967-),男,四川仁寿人,西南石油大学教授,主要从事非常规油气开发、数值模拟、试井分析等方面的教学与科研工作。地址:四川省成都市新都区新都大道8号,西南石油大学油气藏地质及开发工程国家重点实验室,邮政编码:610500。E-mail:zhangliehui@vip.163.com

收稿日期: 2021-04-13

  修回日期: 2021-12-20

  网络出版日期: 2022-01-21

基金资助

国家自然科学基金重点项目“致密气藏储层干化、提高气体渗流能力的基础研究”(51534006); 四川省应用基础研究项目“致密气藏储层无固相残留深度干化技术基础研究”(2019YJ0424)

A reservoir drying method for enhancing recovery of tight gas

  • ZHANG Liehui ,
  • XIONG Yu ,
  • ZHAO Yulong ,
  • TANG Hongming ,
  • GUO Jingjing ,
  • JIA Chunsheng ,
  • LEI Qiang ,
  • WANG Binghe
Expand
  • 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. Institute of Exploration & Exploitation, PetroChina Yumen Oil Company, Yumen 735019, China

Received date: 2021-04-13

  Revised date: 2021-12-20

  Online published: 2022-01-21

摘要

基于广义水锁伤害机理及水锁解除方法研究,研制用于提高致密气采收率的干化剂并对其基础性能、注入方式、干化效果进行评价。结合室内实验研制出适用于不同类型致密储集层的干化剂体系,研究了干化剂的化学效应、热效应、抗盐作用、抗盐配方以及干化反应延迟作用机理与方法,测试了超临界CO2对干化剂体系的溶解与增溶特性,提出了干化剂超临界CO2溶解注入方法,分析了超临界CO2与基质微孔中地层水作用机理,对比研究了干化前后储集层微观孔隙结构特征和渗流特征,在建立核磁共振和激光刻蚀模型联合表征方法基础上,定性和定量评价了干化剂对不同产状束缚水的干化效果,采用格子Boltzmann方法评价了干化效应对气体微观渗流能力影响,结合数值模拟方法分析了干化效应等对气井产能及生产动态的影响。研究表明,干化可大幅降低致密储集层含水饱和度,提高井筒附近或压裂缝附近气体渗流能力,可在储集层干化基础上发展新的致密气增采工艺措施。

本文引用格式

张烈辉 , 熊钰 , 赵玉龙 , 唐洪明 , 郭晶晶 , 贾春生 , 雷强 , 王秉合 . 用于致密气提高采收率的储集层干化方法[J]. 石油勘探与开发, 2022 , 49(1) : 125 -135 . DOI: 10.11698/PED.2022.01.11

Abstract

Based on the study of damage mechanisms of generalized water lock and related water lock removal methods, drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, injection mode and drying effect of the drying agents were evaluated. The chemical effect, thermal effect, salt resistance, salt resistance formulas and delay mechanism of the drying agent systems for different types of tight reservoirs developed through lab experiment were investigated. The solubility and solubilization properties of supercritical carbon dioxide on drying agent systems were tested. The injection mode of dissolving drying agent in supercritical carbon dioxide was proposed. The mechanisms of supercritical carbon dioxide with water in formation matrix micropores were analyzed. Micro-pore structures and seepage characteristics of reservoir before and after drying were compared. Based on the characterization combining NMR and laser etched pore structure model, drying effects of the drying agents on bound water of different occurrences were evaluated qualitatively and quantitatively. Lattice Boltzmann method was used to evaluate the influence of drying effect on gas micro-seepage ability. The influence of drying effect on productivity and production performance of gas well was analyzed by numerical simulation. The drying can greatly reduce water saturation of tight reservoir and improve the seepage capacity of gas near wellbore and fractures. The new measures enhancing recovery of tight gas reservoirs on the basis of reservoir drying could be developed.

参考文献

[1] 马新华. 非常规天然气“极限动用”开发理论与实践[J]. 石油勘探与开发, 2021, 48(2): 326-336.
MA Xinhua.“Extreme utilization” development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336.
[2] 唐洪明, 朱柏宇, 王茜, 等. 致密砂岩气层水锁机理及控制因素研究[J]. 中国科学: 技术科学, 2018, 48(5): 537-547.
TANG Hongming, ZHU Boyu, WANG Qian, et al.Mechanism and control factors of water blocking in tight sandstone gas reservoir[J]. SCIENTIA SINICA Technologica, 2018, 48(5): 537-547.
[3] 游利军, 石玉江, 张海涛, 等. 致密砂岩气藏水相圈闭损害自然解除行为研究[J]. 天然气地球科学, 2013, 24(6): 1214-1219.
YOU Lijun, SHI Yujiang, ZHANG Haitao, et al.Spontaneous removal behavior of water phase trapping damage in tight sandstone gas reservoirs[J]. Natural Gas Geoscience, 2013, 24(6): 1214-1219.
[4] LI G.Clean up water blocking in gas reservoirs by microwave heating: Laboratory studies[R]. SPE 101072, 2006.
[5] 徐凌. PW低渗气藏解除水锁技术研究[D]. 成都: 西南石油大学, 2014.
XU Ling.Study on water locking technology of PW low permeability gas reservoir[D]. Chengdu: Southwest Petroleum University, 2014.
[6] KRISHNAMOORTI R.Extracting the benefits of nanotechnology for the oil industry[J]. Journal of Petroleum Technology, 2006, 58(11): 24-26.
[7] 李龙, 孙金声, 刘勇, 等. 纳米材料在钻井完井流体和油气层保护中的应用研究进展[J]. 油田化学, 2013, 30(1): 139-144.
LI Long, SUN Jinsheng, LIU Yong, et al.Recent progress of application of nanomaterials in drilling/completion fluids and reservoir protection[J]. Oilfield Chemistry, 2013, 30(1): 139-144.
[8] 王建, 封卫强, 袁浩仁. 纯化油田低渗透砂岩油藏解除水锁伤害研究[J]. 长江大学学报(自然科学版), 2011, 8(8): 54-56.
WANG Jian, FENG Weiqiang, YUAN Haoren.The research of water lock removal for low permeability sandstone reservoirs in Chunhua Oilfield[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(8): 54-56.
[9] 白芳林. 苏6井区气藏伤害因素分析及降低水锁伤害方法研究[D]. 西安: 西安石油大学, 2011.
BAI Fanglin.Su 6 well gas reservoir area and reduce the harm factor analysis method of water block damage[D]. Xi’an: Xi’an Shiyou University, 2011.
[10] MAHADEVAN J, SHARMA M M.Water removal from porous media by gas injection: Experiments and simulation[J]. Transport in Porous Media, 2007, 66: 587-309.
[11] AL-ANAZI H A, WALKER J G, POPE G A, et al. A successful methanol treatment in a gas-condensate reservoir: Field application[R]. SPE 80901, 2003.
[12] ALZATE G A, FRANCO C A, RESTREPO A, et al.Evaluation of alcohol-based treatments for condensate banking removal[R]. SPE 98359, 2006.
[13] 熊钰, 莫军, 李佩斯, 等. 致密储层干化主剂筛选评价与配方研制[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 165-172.
XIONG Yu, MO Jun, LI Peisi, et al.Selection, evaluation, and formulation of drying agents for tight sand reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(1): 165-172.
[14] 李佩斯. 低渗致密气藏干化剂的研制与筛选[D]. 成都: 西南石油大学, 2018.
LI Peisi.Development and screening of drying agents for low permeability tight gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2018.
[15] 熊钰, 莫军, 李佩斯, 等. 致密储层束缚水干化反应及干化效应差异分析与评价[J]. 化学通报, 2018, 81(7): 646-652.
XIONG Yu, MO Jun, LI Peisi, et al.Analysis and evaluation of bound water drying reaction and drying effect in tight reservoir[J]. Chemistry, 2018, 81(7): 646-652.
[16] 莫军. 致密气藏干化剂配方优化及干化机理研究[D]. 成都: 西南石油大学, 2019.
MO Jun.Study on formula optimization and mechanism of drying agent for tight gas reservoir[D]. Chengdu: Southwest Petroleum University, 2019.
[17] 蒋红梅, 汤勇, 陈文, 等. 油气藏地层水蒸发产生盐析的研究新进展[J]. 钻采工艺, 2009, 32(5): 50-53.
JIANG Hongmei, TANG Yong, CHEN Wen, et al.Research on salting out during formation water evaporation in oil-gas reservoirs[J]. Drilling & Production Technology, 2009, 32(5): 50-53.
[18] KLEINITZ W, KOEHLER M, DIETZSCH G.The precipitation of salt in gas producing wells[R]. SPE 68953, 2001.
[19] ZULUAGA E, MMNOZ N I, OBANDO G A.An experimental study to evaluate water vaporization and formation damage caused by dry gas flow through porous media[R]. SPE 68335, 2001.
[20] 傅希桐. 致密气藏干化剂改进及配方优化研究[D]. 成都: 西南石油大学, 2020.
FU Xitong.Study on improvement and formulation optimization of drying agent for tight gas reservoir[D]. Chengdu: Southwest Petroleum University, 2020.
[21] 熊钰, 蒋军, 张烈辉, 等. 致密气藏干化处理用碳化铝超细粉末的复合改性研究[J]. 石油化工, 2017, 46(11): 66-69.
XIONG Yu, JIANG Jun, ZHANG Liehui, et al.Modification of the ultrafine Al4C3 powder used in the dry processing of the tight gas reservoir[J]. Petrochemical Technology, 2017, 46(11): 66-69.
[22] ZHANG L, JIANG J, XIONG Y.Delaying the effect of an aluminum carbide drying agent in a tight gas reservoir[J]. AIP Advances, 2018, 8(3): 035118.
[23] 熊钰, 莫军, 李佩斯, 等. 致密气藏储层干化剂在超临界CO2中的溶解性及增溶研究[J]. 化学研究与应用, 2019, 31(1): 72-78.
XIONG Yu, MO Jun, LI Peisi, et al.Study on solubility and solubilization of drying agent in supercritical carbon dioxide[J]. Chemical Research and Application, 2019, 31(1): 72-78.
[24] XIONG Y, FU X, MO J, et al.Study on solubility and solubilisation of drying agent in supercritical carbon dioxide for improving local permeability of tight gas reservoir[J]. Molecular Physics, 2019, 118(1): 1-12.
[25] XIONG W, ZHANG L, ZHAO Y, et al.A generalized equation of state for associating fluids in nanopores: Application to CO2-H2O, CH4-H2O, CO2-CH4, and CO2-CH4-H2O systems and implication for extracting dissolved CH4 by CO2 injection[J]. Chemical Engineering Science, 2021, 229: 116034.
[26] JIA C, WANG C, ZHANG L, et al.Predictions of entropy for diatomic molecules and gaseous substances[J]. Chemical Physics Letters, 2018, 692: 57-60.
[27] XIONG W, ZHAO Y, QIN J, et al.Phase equilibriarium modeling for confined fluids in nanopores using an association equation of state[J]. Journal of Supercritical Fluids, 2021, 169: 105118.
[28] 雷强. 核磁共振在线驱替定量表征多孔介质内干化效应和流动特征[R]. 成都: 第十一届全国低场核磁共振技术与应用研讨会, 2019.
LEI Qiang.The drying effect and flow characteristics in porous media were quantitatively characterized by NMR online displacement[R]. Chengdu: The 11th National Symposium on Low-field NMR Technology and Application, 2019.
[29] 赵玉龙, 刘香禺, 张烈辉, 等. 致密砂岩气藏气水流动规律及储层干化作用机理[J]. 天然气工业, 2020, 40(9): 70-79.
ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al.Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs[J]. Natural Gas Industry, 2020, 40(9): 70-79.
[30] LEI Q, ZHANG L, TANG H, et al.Quantitative study of different patterns of microscale residual water and their effect on gas permeability through digital core analysis[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108053.
[31] 刘香禺. 考虑储层干化效应的致密气藏流动模拟研究[D]. 成都: 西南石油大学, 2019.
LIU Xiangyu.Flow simulation of tight gas reservoir considering reservoir drying effect[D]. Chengdu: Southwest Petroleum University, 2019.
[32] 郭晶晶, 戴领, 张烈辉. 致密砂岩储层干化效果分析与评价[R]. 太原: 第十届全国天然气藏高效开发技术研讨会, 2019.
GUO Jingjing, DAI Ling, ZHANG Liehui.Analysis and evaluation of dryness effect of tight sandstone reservoir[R]. Taiyuan: The 10th National Symposium on Efficient Development Technology of Natural Gas Reservoir, 2019.
[33] 戴领. 干化对低渗砂岩储层渗流影响的实验研究[D]. 成都: 西南石油大学, 2019.
DAI Ling.Experimental study on the effect of drying on the seepage of low permeability sandstone reservoir[D]. Chengdu: Southwest Petroleum University, 2019.
[34] 赵玉龙, 刘香禺, 张烈辉, 等. 基于格子Boltzmann方法的非常规天然气微尺度流动基础模型[J]. 石油勘探与开发, 2021, 48(1): 156-165.
ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al.A basic model of unconventional gas microscale flow based on the lattice Boltzmann method[J]. Petroleum Exploration and Development, 2021, 48(1): 156-165.
[35] 张烈辉, 刘香禺, 赵玉龙, 等. 孔喉结构对致密气微尺度渗流特征的影响[J]. 天然气工业, 2019, 39(8): 50-57.
ZHANG Liehui, LIU Xiangyu, ZHAO Yulong, et al.Effect of pore throat structure on micro-scale seepage characteristics of tight gas reservoirs[J]. Natural Gas Industry, 2019, 39(8): 50-57.
[36] ZHAO Y, LIU L, ZHANG L, et al.Simulation of a multistage fractured horizontal well in a tight oil reservoir using an embedded discrete fracture model[J]. Energy Science & Engineering, 2019, 7(5): 1485-1503.
[37] ZHANG R, ZHANG L, WANG R, et al.Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow[J]. Journal of Geophysics and Engineering, 2018, 15(3): 877-894.
文章导航

/