油气田开发

超深断控缝洞型碳酸盐岩油藏注水重力驱油理论探索

  • 杨学文 ,
  • 汪如军 ,
  • 邓兴梁 ,
  • 李世银 ,
  • 张辉 ,
  • 姚超
展开
  • 中国石油塔里木油田公司,新疆库尔勒 841000
杨学文(1962-),男,湖北钟祥人,中国石油塔里木油田公司教授级高级工程师,主要从事深层、超深层油气勘探开发研究工作。地址:新疆维吾尔自治区库尔勒市石化大道26号,塔里木油田公司,邮政编码:841000。E-mail: yangxuewen @petrochina.com.cn

收稿日期: 2021-06-16

  修回日期: 2021-11-29

  网络出版日期: 2022-01-21

基金资助

国家科技重大专项“深层-超深层油气成藏过程与勘探新领域”(2017ZX05008-004); 中国石油天然气股份有限公司科技重大专项“缝洞型碳酸盐岩油气藏效益开发关键技术研究与应用”(2018E-18)

Theoretical exploration of water injection gravity flooding oil in ultra-deep fault-controlled fractured-cavity carbonate reservoirs

  • YANG Xuewen ,
  • WANG Rujun ,
  • DENG Xingliang ,
  • LI Shiyin ,
  • ZHANG Hui ,
  • YAO Chao
Expand
  • PetroChina Tarim Oilfield Company, Korla 841000, China

Received date: 2021-06-16

  Revised date: 2021-11-29

  Online published: 2022-01-21

摘要

在超深层断控碳酸盐岩缝洞组合地质特征与储集单元划分分析基础上,制作了2种物理模型,开展了注水驱油物理模拟试验;探索了断控缝洞型碳酸盐岩油藏复杂流动条件下的注水驱油机理,建立了断控碳酸盐岩油藏渗流和自由流共存状态下的数学模型,并据此开展了矿场注水先导试验,评价注水提高采收率实施效果。研究表明:断控缝洞型碳酸盐岩油藏单元可划分为强天然能量连通型、弱天然能量连通型和弱天然能量孤立型3种主要类型;断控缝洞体断裂(裂缝)活动性指数可有效表征储集层连通性,预测注水连通受效方向;断控碳酸盐岩油藏渗流和自由流共存状态下的数学模型,可定量描述缝洞体中流体的流动规律;断控缝洞体注入水受岩性体毛细管力作用弱,油水运动主要受重力主导;依据缝洞空间连通结构和井储空间配置关系提出的单井注水吞吐替油、单元注水驱油、单井高压注水开发方式经矿场先导试验证实,注水重力驱油效果明显。

本文引用格式

杨学文 , 汪如军 , 邓兴梁 , 李世银 , 张辉 , 姚超 . 超深断控缝洞型碳酸盐岩油藏注水重力驱油理论探索[J]. 石油勘探与开发, 2022 , 49(1) : 116 -124 . DOI: 10.11698/PED.2022.01.10

Abstract

Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil displacement by water injection were carried out to find out water flooding mechanism in the fault-controlled fracture-cavity carbonate reservoir under complex flow state. On this basis, a mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flow has been established. Pilot water injection tests have been carried out to evaluate the effects of enhancing oil recovery by water injection. The results show that: fault-controlled fracture-cavity carbonate reservoir units can be divided into three types: the type connected and strong in natural energy, the type connected and weak in natural energy, and the type isolated and weak in natural energy; the fault-fracture activity index of the fault-controlled fractured-cavity body can effectively characterize the connectivity of the reservoir and predict the effective direction of water injection; the mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flows can quantitatively describe the fluid flow law in the fracture-cavity body; the water injected into the fault-controlled fracture-cavity body is weakly affected by the capillary force of the lithologic body, and the oil-water movement is mainly dominated by gravity. The development modes of single well water injection, unit water injection, and single well high pressure water injection proposed based on the connection structure of fracture- cavity space and well storage space configuration are confirmed effective by pilot tests, with obvious water injection gravity flooding effect.

参考文献

[1] 韩剑发, 张海祖, 于红枫, 等. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探[J]. 岩石学报, 2012, 28(3): 769-782.
HAN Jianfa, ZHANG Haizu, YU Hongfeng, et al.Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong uplift[J]. Acta Petrologica Sinica, 2012, 28(3): 769-782.
[2] 田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 272-282.
TIAN Jun, WANG Qinghua, YANG Haijun, et al.Petroleum exploration history and enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 272-282.
[3] 朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3): 827-844.
ZHU Guangyou, YANG Haijun, ZHU Yongfeng, et al.Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 827-844.
[4] 赵靖舟, 王清华, 时保宏, 等. 塔里木古生界克拉通盆地海相油气富集规律与古隆起控油气论[J]. 石油与天然气地质, 2007, 28(6): 703-712.
ZHAO Jingzhou, WANG Qinghua, SHI Baohong, et al.Marine hydrocarbon enrichment rules and palaeouplift-controlling hydrocarbon theory for the Paleozoic Tarim craton basin[J]. Oil & Gas Geology, 2007, 28(6): 703-712.
[5] 丁志文, 陈方方, 谢恩, 等. 塔中M区奥陶系碳酸盐岩凝析气藏综合分类及开发技术对策[J]. 油气地质与采收率, 2017, 24(5): 84-92.
DING Zhiwen, CHEN Fangfang, XIE En, et al.Comprehensive classification and development strategies of Ordovician carbonate condensate gas reservoirs in Tazhong M area[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 84-92.
[6] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.
JIAO Fangzheng.Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839.
[7] 王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71.
WANG Qinghua, YANG Haijun, WANG Rujun, et al.Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58-71.
[8] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.
QI Lixin.Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51.
[9] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.
JIAO Fangzheng.Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.
[10] 汪如军, 王轩, 邓兴梁, 等. 走滑断裂对碳酸盐岩储层和油气藏的控制作用: 以塔里木盆地北部坳陷为例[J]. 天然气工业, 2021, 41(3): 10-20.
WANG Rujun, WANG Xuan, DENG Xingliang, et al.Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation: A case study of the northern depression in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 10-20.
[11] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.
LU Xinbian, HU Wenge, WANG Yan, et al.Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
[12] 邓兴梁, 闫婷, 张银涛, 等. 走滑断裂断控碳酸盐岩油气藏的特征与井位部署思路: 以塔里木盆地为例[J]. 天然气工业, 2021, 41(3): 21-29.
DENG Xingliang, YAN Ting, ZHANG Yintao, et al.Characteristics and well location deployment ideas of strike-slip fault controlled carbonate oil and gas reservoirs: A case study of the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 21-29.
[13] 姚军, 黄朝琴, 王子胜, 等. 缝洞型油藏的离散缝洞网络流动数学模型[J]. 石油学报, 2010, 31(5): 815-819, 824.
YAO Jun, HUANG Zhaoqin, WANG Zisheng, et al.Mathematical model of fluid flow in fractured vuggy reservoirs based on discrete fracture-vug network[J]. Acta Petrolei Sinica, 2010, 31(5): 815-819, 824.
[14] YAO J, HUANG Z Q.Fractured vuggy carbonate reservoir simulation[M]. Berlin, Heidelberg: Springer, 2017.
[15] HUANG Z Q, GAO B, ZHANG X Y, et al.On the coupling of two-phase free flow and porous flow[C]//ECMOR XV-15th European Conference on the Mathematics of Oil Recovery. Amsterdam: European Association of Geoscientists & Engineers, 2016.
[16] 崔书岳, 康志江, 邸元. 基于多相流模型的缝洞型油藏数值模拟软件研制与应用[J]. 地质科技情报, 2019, 38(5): 97-104.
CUI Shuyue, KANG Zhijiang, DI Yuan.Development and application of numerical simulation software platform for fractured-cave reservoir based on multiphase flow model[J]. Geological Science and Technology Information, 2019, 38(5): 97-104.
[17] 崔书岳, 邸元. 缝洞型油藏基于重力分异假定的数值模拟[J]. 应用基础与工程科学学报, 2020, 28(2): 331-341.
CUI Shuyue, DI Yuan.Numerical simulation of fractured-vuggy reservoir based on assumption of gravity segregation[J]. Journal of Basic Science and Engineering, 2020, 28(2): 331-341.
[18] LIU L J, HUANG Z Q, YAO J, et al.Simulating two-phase flow and geomechanical deformation in fractured karst reservoirs based on a coupled hydro-mechanical model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104543.
[19] ZHANG F, AN M, YAN B, et al.A novel hydro-mechanical coupled analysis for the fractured vuggy carbonate reservoirs[J]. Computers and Geotechnics, 2019, 106: 68-82.
[20] 王慧, 刘泉声. 基于FEMM-Fracflow研究缝洞型油藏中裂缝扩展问题[J]. 地质力学学报, 2020, 26(1): 55-64.
WANG Hui, LIU Quansheng.Investigation on fracture propagation in fractured-cavity reservoirs based on FEMM-fracflow modelling[J]. Journal of Geomechanics, 2020, 26(1): 55-64.
[21] 张耀峰. 缝洞型碳酸盐岩油藏裂缝延伸规律数值模拟研究[D]. 武汉: 武汉大学, 2020: 90.
ZHANG Yaofeng.Numerical simulation study on fracture extension law in fracture-cavity carbonate reservoirs[D]. Wuhan: Wuhan University, 2020: 90.
[22] ZOBACK M D.Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2007.
[23] ZOBACK M D, KOHLI A, DAS I, et al.The importance of slow slip on faults during hydraulic fracturing stimulation of shale gas reservoirs[R]. SPE 155476-MS, 2012.
[24] 张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388.
ZHANG Hui, YIN Guoqing, WANG Haiying.Effects of natural fractures geomechanical response on gas well productivity in Kuqa depression, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(3): 379-388.
[25] CAI Z Z, ZHANG H, YANG H J, et al.Investigation of geomechanical response of fault in carbonate reservoir and its application to well placement optimization in YM2 Oilfield in Tarim Basin[R]. SPE 175017-MS, 2015.
[26] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.
DING Zhiwen, WANG Rujun, CHEN Fangfang, et al.Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in in South Tahe area of Halahatang oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296.
[27] 操银香, 李柏颉, 郭媛. 高压注水扩容在缝洞型碳酸盐岩油藏中的应用: 以塔河S1井为例[J]. 油气藏评价与开发, 2020, 10(2): 49-53.
CAO Yinxiang, LI Bojie, GUO Yuan.Application of high pressure water injection expansion in fractured-vuggy carbonate oil reservoir: A case study of well-S1 in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 49-53.
[28] 王聿宸, 汪涛涛. 缝洞型碳酸盐岩油藏高压注水成因分析[J]. 辽宁化工, 2018, 47(12): 1237-1238, 1287.
WANG Yuchen, WANG Taotao.Analysis on causes of high pressure water injection in fractured-vuggy carbonate reservoirs[J]. Liaoning Chemical Industry, 2018, 47(12): 1237-1238, 1287.
文章导航

/