油气勘探

碳酸盐缓坡沉积微相特征及其对储集层发育的制约—以塔里木盆地古城地区中—下奥陶统为例

  • 刘艺妮 ,
  • 胡明毅 ,
  • 张三 ,
  • 张君龙 ,
  • 高达 ,
  • 肖传桃
展开
  • 1.长江大学地球科学学院,武汉 430100;
    2.大庆油田勘探开发研究院,黑龙江大庆,163712
刘艺妮(1995-),女,山东东营人,长江大学在读博士研究生,主要从事层序地层学、沉积学和油气地质综合研究。地址:湖北省武汉市蔡甸区大学路111号,长江大学地区科学学院,邮政编码:430100。E-mail:lyn953403954@163.com

收稿日期: 2021-10-15

  修回日期: 2021-12-06

  网络出版日期: 2022-01-21

基金资助

国家自然科学基金项目(42072171,41772103); 国家油气重大科技专项(2016ZX05007-002); 中国石油天然气股份有限公司重大科技专项(1016E-0204)

Characteristics and impacts on favorable reservoirs of carbonate ramp microfacies: A case study of the Middle-Lower Ordovician in Gucheng area, Tarim Basin, NW China

  • LIU Yini ,
  • HU Mingyi ,
  • ZHANG San ,
  • ZHANG Junlong ,
  • GAO Da ,
  • XIAO Chuantao
Expand
  • 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Exploration and Development Research Institute, PetroChina Daqing Oilfield Company, Daqing 163712, China

Received date: 2021-10-15

  Revised date: 2021-12-06

  Online published: 2022-01-21

摘要

基于最新钻井岩心、薄片、三维地震和测井资料以及近年勘探实践,采用精细碳酸盐岩沉积学理论方法对塔里木盆地古城地区中—下奥陶统碳酸盐岩层序地层和沉积微相进行深入研究,并探讨二者对有利储集层发育的制约作用。结果表明,古城地区中—下奥陶统为1套典型的碳酸盐缓坡相沉积,进一步可细分为内缓坡、浅缓坡内带、浅缓坡外带、深缓坡共4种亚相及10种微相。内缓坡亚相由泥云坪和白云质潟湖微相组成,岩性以纹层状泥粉晶白云岩为主,岩性致密;浅缓坡内带亚相发育云化滩、滩顶云坪和滩间云坪微相,主要由具交代残余结构的晶粒白云岩组成,晶间孔及溶蚀孔发育,平均孔隙度达4.36%;浅缓坡外带由中—高能滩、低能滩和滩间海微相组成,岩性为砂屑、鲕粒灰岩和薄层泥晶灰岩等,孔隙欠发育;深缓坡以低能静水泥沉积为主,局部发育风暴滩沉积。中—下奥陶统自下而上依次发育6个三级层序,其中主力储集层SQ3层序鹰山组三段发育3个四级高频层序。研究区有利储集层发育明显受碳酸盐缓坡沉积微相和高频层序双重控制,前者控制原生孔隙结构,后者控制准同生期白云石化作用和暴露溶蚀强度。不同时期浅缓坡内带云化滩及滩顶云坪纵向叠置、横向拼接,可构成一定规模的似“台缘带”优质储集层,是碳酸盐缓坡相有利勘探相带。

本文引用格式

刘艺妮 , 胡明毅 , 张三 , 张君龙 , 高达 , 肖传桃 . 碳酸盐缓坡沉积微相特征及其对储集层发育的制约—以塔里木盆地古城地区中—下奥陶统为例[J]. 石油勘探与开发, 2022 , 49(1) : 93 -105 . DOI: 10.11698/PED.2022.01.08

Abstract

Based on the latest drilling core, thin section, 3D seismic, well logging data as well as exploration practice, the sequence stratigraphy and sedimentary microfacies of the Middle-Lower Ordovician carbonates in Gucheng area, and their controlling effects on the development of reservoir were examined by the theory and methods of fine carbonate sedimentological. The results show that the Middle-Lower Ordovician in Gucheng area is a set of typical carbonate ramp deposits, which can be divided into 10 microfacies in 4 subfacies as follows: back ramp, inner shallow ramp, outer shallow ramp and deep ramp. The back ramp subfacies consists of muddy-dolomitic flat and dolomitic lagoon microfacies, and is dominated by lamellar micrite dolomite tight in lithology. The inner shallow ramp subfacies includes dolomitic shoal and dolomitic flat in shoal top and dolomitic flat between shoals microfacies, and is mainly composed of crystal dolomite with metasomatic residual structure; with abundant karst vugs and intercrystalline pores, the crystal dolomite has an average porosity of 4.36%. The outer ramp subfacies includes medium-high and low energy grain shoal and inter-shoal microfacies, and is dominated by sandy limestone, oolitic limestone and micrite limestone with few pores. The deep ramp subfacies is dominated by low-energy argillaceous deposits, with storm shoal microfacies in local parts. The Lower-Middle Ordovician has six third-order sequences from bottom to top, among which SQ3 sequence (the third member of Yingying Formation), the main reservoir, has three fourth-order high-frequency sequences. Apparently, the favorable reservoir in the study area is jointly controlled by sedimentary microfacies and high frequency sequence in the carbonate ramp, the former controls the primary pore structure, and the latter controls the intensities of karstification exposure and dolomitization in the penecontemporaneous period. The dolomitic shoals and top dolomitic flats of different stages, superimposed and connected into favorable reservoirs of considerable scale like "platform margin", are favorable exploration facies in the carbonate ramp.

参考文献

[1] AHR W M.Sedimentary and tectonic controls on the development of an Early Mississippian carbonate ramp, Sacramento Mountains area, New Mexico[M]//CREVELLO P D, WILSON J L, SARG J F, et al. Controls on carbonate platforms and basin development. Tulsa: SEPM Society for Sedimentary Geology, 1989.
[2] 曾允孚, 王成善. 海洋碳酸盐沉积相模式[J]. 矿物岩石, 1991, 11(3): 107-117.
ZENG Yunfu, WANG Chengshan.Marine carbonate depositional facies models[J]. Mineralogy and Petrology, 1991, 11(3): 107-117.
[3] READ J F.Carbonate platform facies models[J]. AAPG Bulletin, 1985, 69(1): 1-21.
[4] BÁBEK O, KALVODA J, COSSEY P, et al. Facies and petrophysical signature of the Tournaisian/Viséan (Lower Carboniferous) sea-level cycle in carbonate ramp to basinal settings of the Wales-Brabant massif, British Isles[J]. Sedimentary Geology, 2013, 284/285: 197-213.
[5] 杜金虎, 张宝民, 汪泽成, 等. 四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因[J]. 天然气工业, 2016, 36(6): 1-10.
DU Jinhu, ZHANG Baomin, WANG Zecheng, et al.Sedimentary model and reservoir genesis of dual grain banks at the Lower Cambrian Longwangmiao Fm carbonate ramp in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(6): 1-10.
[6] KAKEMEM U, JAFARIAN A, HUSINEC A, et al.Facies, sequence framework, and reservoir quality along a Triassic carbonate ramp: Kangan Formation, South Pars Field, Persian Gulf Superbasin[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108166.
[7] 朱永进, 沈安江, 刘玲利, 等. 塔里木盆地晚震旦世—中寒武世构造沉积充填过程及油气勘探地位[J]. 沉积学报, 2020, 38(2): 398-410.
ZHU Yongjin, SHEN Anjiang, LIU Lingli, et al.Tectonic-sedimentary filling history through the Later Sinian to the Mid-Cambrian in Tarim Basin and its explorational potential[J]. Acta Sedimentologica Sinica, 2020, 38(2): 398-410.
[8] 王招明, 杨海军, 齐英敏, 等. 塔里木盆地古城地区奥陶系天然气勘探重大突破及其启示[J]. 天然气工业, 2014, 34(1): 1-9.
WANG Zhaoming, YANG Haijun, QI Yingmin, et al.Ordovician gas exploration breakthrough in the Gucheng lower uplift of the Tarim Basin and its enlightenment[J]. Natural Gas Industry, 2014, 34(1): 1-9.
[9] 沈安江, 张友, 冯子辉, 等. 塔东古城地区碳酸盐岩储层地质认识与勘探领域[J]. 中国石油勘探, 2020, 25(3): 96-106.
SHEN Anjiang, ZHANG You, FENG Zihui, et al.Geological understandings and exploration prospects of carbonate reservoirs in Gucheng area, Tadong, Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 96-106.
[10] 张友, 李强, 郑兴平, 等. 塔里木盆地东部古城—肖塘地区寒武纪—奥陶纪台地类型、演化过程及有利储集相带[J]. 石油学报, 2021, 42(4): 447-465.
ZHANG You, LI Qiang, ZHENG Xingping, et al.Types, evolution and favorable reservoir facies belts in the Cambrian-Ordovician platform in Gucheng-Xiaotang area, eastern Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(4): 447-465.
[11] 金振奎, 余宽宏. 白云岩储集层埋藏溶蚀作用特征及意义: 以塔里木盆地东部下古生界为例[J]. 石油勘探与开发, 2011, 38(4): 428-434.
JIN Zhenkui, YU Kuanhong.Characteristics and significance of the burial dissolution of dolomite reservoirs: Taking the Lower Palaeozoic in eastern Tarim Basin as an example[J]. Petroleum Exploration and Development, 2011, 38(4): 428-434.
[12] 张君龙, 胡明毅, 冯子辉, 等. 塔里木盆地古城地区寒武系台缘丘滩体类型及与古地貌的关系[J]. 石油勘探与开发, 2021, 48(1): 94-105.
ZHANG Junlong, HU Mingyi, FENG Zihui, et al.Types of the Cambrian platform margin mound-shoal complexes and their relationship with paleogeomorphology in Gucheng area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 94-105.
[13] HU M Y, NGIA N R, GAO D.Dolomitization and hydrotectonic model of burial dolomitization of the Furongian-Lower Ordovician carbonates in the Tazhong Uplift, central Tarim Basin, NW China: Implications from petrography and geochemistry[J]. Marine and Petroleum Geology, 2019, 106: 88-115.
[14] 冯增昭, 鲍志东, 吴茂炳, 等. 塔里木地区寒武纪和奥陶纪岩相古地理[M]. 北京: 地质出版社, 2005: 23-60.
FENG Zengzhao, BAO Zhidong, WU Maobing, et al.Lithofacies palaeogeography of Cambrian and Ordovician in Tarim Basin[M]. Beijing: Geological Publishing House, 2005: 23-60.
[15] 曹颖辉, 王珊, 张亚金, 等. 塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J]. 石油勘探与开发, 2019, 46(6): 1099-1114.
CAO Yinghui, WANG Shan, ZHANG Yajin, et al.Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng area, Tarim Basin, China[J]. Petroleum Exploration and Development, 2019, 46(6): 1099-1114.
[16] 贺锋, 林畅松, 刘景彦, 等. 塔东南寒武系-中下奥陶统碳酸盐岩台缘带的迁移与相对海平面变化的关系[J]. 石油与天然气地质, 2017, 38(4): 711-721.
HE Feng, LIN Changsong, LIU Jingyan, et al.Migration of the Cambrian and Middle-Lower Ordovician carbonate platform margin and its relation to relative sea level changes in southeastern Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 711-721.
[17] 胡明毅, 孙春燕, 高达. 塔里木盆地下寒武统肖尔布拉克组构造-岩相古地理特征[J]. 石油与天然气地质, 2019, 40(1): 12-23.
HU Mingyi, SUN Chunyan, GAO Da.Characteristics of tectonic- lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(1): 12-23.
[18] 厉玉乐, 王显东, 孙效东, 等. 古城低凸起构造演化及有利勘探方向[J]. 大庆石油地质与开发, 2014, 33(5): 97-102.
LI Yule, WANG Xiandong, SUN Xiaodong, et al.Structural evolution and favorable exploration direction for Gucheng low uplift[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(5): 97-102.
[19] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古—中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
LI Ang, JU Linbo, ZHANG Liyan.Relationship between hydrocarbon accumulation and Paleo-Mesozoic tectonic evolution characteristics of Gucheng lower uplift in Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2): 545-555.
[20] 樊太亮, 于炳松, 高志前. 塔里木盆地碳酸盐岩层序地层特征及其控油作用[J]. 现代地质, 2007, 21(1): 57-65.
FAN Tailiang, YU Bingsong, GAO Zhiqian.Characteristics of carbonate sequence stratigraphy and its control on oil-gas in Tarim Basin[J]. Geoscience, 2007, 21(1): 57-65.
文章导航

/