油气勘探

中东东鲁卜哈利盆地碳酸盐岩微孔型低电阻率油层饱和度评价方法

  • 王拥军 ,
  • 孙圆辉 ,
  • 杨思玉 ,
  • 吴淑红 ,
  • 刘辉 ,
  • 童敏 ,
  • 吕恒宇
展开
  • 1.提高石油采收率国家重点实验室,北京 100083;
    2.中国石油勘探开发研究院,北京 100083
王拥军(1972-),男,四川南充人,博士,中国石油勘探开发研究院高级工程师,从事开发测井及开发地质研究工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院迪拜技术支持分中心,邮政编码:100083。E-mail: wangyongjun07@petrochina.com.cn

收稿日期: 2021-01-04

  修回日期: 2021-10-20

  网络出版日期: 2022-01-21

基金资助

中国石油天然气集团有限公司科学研究与技术开发项目(2019D-4410)

Saturation evaluation of microporous low resistivity carbonate oil pays in Rub Al Khali Basin in the Middle East

  • WANG Yongjun ,
  • SUN Yuanhui ,
  • YANG Siyu ,
  • WU Shuhong ,
  • LIU Hui ,
  • TONG Min ,
  • LYU Hengyu
Expand
  • 1. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Received date: 2021-01-04

  Revised date: 2021-10-20

  Online published: 2022-01-21

摘要

针对中东地区东鲁卜哈利盆地海相碳酸盐岩低电阻率油层常规测井识别度低的问题,综合利用模拟成藏和开采过程的驱替电阻率实验,以及岩石薄片、压汞、核磁共振实验数据,分析驱替过程中流体分布和岩石导电性变化特征,结合地质认识分析低电阻率油层成因并优选饱和度解释模型,确定模型参数的变化规律和分布范围,提出一套适合研究区的低电阻率油层饱和度测井解释方法。研究区低电阻率油层电阻率小于1 Ω·m,与水层相当甚至略低,地质研究揭示其发育于低能沉积环境,储集空间受微细孔喉控制,平均孔喉半径小于0.7 μm,是典型的微孔型低电阻率油层。该类储集层与砂泥岩低电阻率油层不同,其岩石导电路径迂曲度低于常规储集层,导致相同饱和度条件下电阻率低。研究区低电阻率油层饱和度解释适用阿尔奇公式,其胶结指数值为1.77~1.93、饱和度指数值为1.82~2.03,分别比常规储集层低0.2~0.4。采用基于岩石物理相分类统计的方法确定解释参数,计算的低电阻率油层含油饱和度为30%~50%,比常规方法高约15%,与Dean Stark、储集层饱和度测井、试油及生产数据基本一致。经过15口井试油测试和生产验证,符合率超过90%,进一步验证了该方法的可行性。

本文引用格式

王拥军 , 孙圆辉 , 杨思玉 , 吴淑红 , 刘辉 , 童敏 , 吕恒宇 . 中东东鲁卜哈利盆地碳酸盐岩微孔型低电阻率油层饱和度评价方法[J]. 石油勘探与开发, 2022 , 49(1) : 81 -92 . DOI: 10.11698/PED.2022.01.07

Abstract

To solve the problem that it is difficult to identify carbonate low resistivity pays (LRPs) by conventional logging methods in the Rub Al Khali Basin, the Middle East, the variation of fluid distribution and rock conductivity during displacement were analyzed by displacement resistivity experiments simulating the process of reservoir formation and production, together with the data from thin sections, mercury injection and nuclear magnetic resonance experiments. In combination with geological understandings, the genetic mechanisms of LRPs were revealed, then the saturation interpretation model was selected, the variation laws and distribution range of the model parameters were defined, and finally an updated comprehensive saturation interpretation technique for the LRPs has been proposed. In the study area, the LRPs have resistivity values of less than 1 Ω·m, similar to or even slightly lower than that of the water layers. Geological research reveals that the LRPs were developed in low-energy depositional environment and their reservoir spaces are controlled by micro-scale pore throats, with an average radius of less than 0.7 μm, so they are typical microporous LRPs. Different from LRPs of sandstone and mudstone, they have less tortuous conductive paths than conventional reservoirs, and thus lower resistivity value under the same saturation. Archie's formula is applicable to the saturation interpretation of LRPs with a cementation index value of 1.77-1.93 and a saturation index value of 1.82-2.03 that are 0.2-0.4 lower than conventional reservoirs respectively. By using interpretation parameters determined by classification statistics of petrophysical groups (PGs), oil saturations of the LRPs were calculated at bout 30%-50%, 15% higher than the results by conventional methods, and basically consistent with the data of Dean Stark, RST, oil testing and production. The 15 wells of oil testing and production proved that the coincidence rate of saturation interpretation is over 90% and the feasibility of this method has been further verified.

参考文献

[1] 宋新民, 李勇. 中东碳酸盐岩油藏注水开发思路与对策[J]. 石油勘探与开发, 2018, 45(4): 679-689.
SONG Xinmin, LI Yong.Optimum development options and strategies for water injection development of carbonate reservoirs in the Middle East[J]. Petroleum Exploration and Development, 2018, 45(4): 679-689.
[2] 赵伦, 范子菲, 宋珩, 等. 提高低渗碳酸盐岩储集层动用程度技术[J]. 石油勘探与开发, 2009, 36(4): 508-512.
ZHAO Lun, FAN Zifei, SONG Heng, et al.Technologies for improving producing degree of low permeability carbonate reservoirs[J]. Petroleum Exploration and Development, 2009, 36(4): 508-512.
[3] 刘辉, 郭睿, 董俊昌, 等. 伊朗南阿扎德甘油田Sarvak油藏产能评价及影响因素[J]. 石油勘探与开发, 2013, 40(5): 585-590.
LIU Hui, GUO Rui, DONG Junchang, et al.Productivity evaluation and influential factor analysis for Sarvak reservoir in South Azadegan oil field, Iran[J]. Petroleum Exploration and Development, 2013, 40(5): 585-590.
[4] ASHQAR A, UCHIDA M, SALAHUDDIN A A, et al.Evaluating a complex low-resistivity pay carbonate reservoir onshore Abu Dhabi: From model to implementation[R]. SPE 182912-MS, 2016.
[5] VAJNAR E A, KIDWELL C M, HALEY R A.Surprising productivity from low-resistivity sands[R]. SPWLA 1977-EE, 1977.
[6] PITTMAN E D.Microporosity in carbonate rocks: Geological notes[J]. AAPG Bulletin, 1971, 55(10): 1873-1878.
[7] WORTHINGTON P F.Recognition and evaluation of low-resistivity pay[J]. Petroleum Geoscience, 2000, 6(1): 77-92.
[8] 邹才能, 潘松圻, 赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416-426.
ZOU Caineng, PAN Songqi, ZHAO Qun.On the connotation, challenge and significance of China’s “energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416-426.
[9] 穆龙新, 陈亚强, 许安著, 等. 中国石油海外油气田开发技术进展与发展方向[J]. 石油勘探与开发, 2020, 47(1): 120-128.
MU Longxin, CHEN Yaqiang, XU Anzhu, et al.Technological progress and development directions of PetroChina overseas oil and gas field production[J]. Petroleum Exploration and Development, 2020, 47(1): 120-128.
[10] 胡友良, 黄鹤雄, 黄大琴, 等. Algeria某油田低电阻率油气层的机理分析及测井解释[J]. 测井技术, 2006, 30(4): 323-326.
HU Youliang, HUANG Hexiong, HUANG Daqin, et al.On mechanism and log interpretation method of oil/gas reservoir with low resistivity in ×oilfield in Algeria[J]. Well Logging Technology, 2006, 30(4): 323-326.
[11] UCHIDA M, SALAHUDDIN A A, ASHQAR A, et al.Evaluation of water saturation in a low-resistivity pay carbonate reservoir onshore Abu Dhabi: An integrated approach[R]. SPE 177709-MS, 2015.
[12] HOLIS Z, PRAYOGI A, PURWAMAN I, et al.The petrophysic role of low resistivity pay zone of Talang Akar Formation, South Sumatera Basin, Indonesia[R]. SPE 182448-MS, 2016.
[13] AYADIUNO C B, KHAN S, ALABBAD A A, et al.Investigating low resistivity-low contrast resistivity pay in a Permo-Carboniferous reservoir, central Saudi Arabia[R]. SPE 188887-MS, 2017.
[14] 杨涛涛, 王霞, 何文昌. 低阻油气层成因及测井识别评价方法分析[J]. 油气地球物理, 2017, 15(4): 1-6.
YANG Taotao, WANG Xia, HE Wenchang.Analysis of genesis of low resistivity oil gas layer and its logging identification evaluation[J]. Petroleum Geophysics, 2017, 15(4): 1-6.
[15] SOUVICK S.Low-resistivity pay (LRP): Ideas for solution[R]. SPE 85675-MS, 2003.
[16] WORTHINGTON P F.Recognition and development of low-resistivity pay[R]. SPE 38035-MS, 1997.
[17] PITTMAN E D.Microporosity in carbonate rocks: Geological notes[J]. AAPG Bulletin, 1971, 55(10): 1873-1878.
[18] HASSAN A, KERANS C.Rock fabric characterization in a low resistivity pay zone from a Lower Cretaceous carbonate reservoir in the Middle East[M]//SCHUELKE J. SEG Technical Program Expanded Abstracts 2013. Houston: Society of Exploration Geophysicists, 2013: 2932-2936.
[19] OKOWI V, ISHOLA A, ONUOHA V, et al.Challenges in identifying and quantifying hydrocarbons in thinly bedded, laminated, and low-resistivity pay zones[R]. SPE 172834-MS, 2014.
[20] 李薇, 闫伟林, 白建平. 淡水钻井液侵入对油层电阻率影响的理论分析和实验研究[J]. 石油勘探与开发, 2004, 31(3): 143-145.
LI Wei, YAN Weilin, BAI Jianping.Theoretical and experimental study of invasion influence of fresh drilling mud on oil pay resistivity[J]. Petroleum Exploration and Development, 2004, 31(3): 143-145.
[21] 田中元, 蒋阿明, 闫伟林, 等. 基于随钻和电缆测井电阻率的钻井液侵入校正方法: 以阿曼DLL油田高孔低渗碳酸盐岩油藏为例[J]. 石油勘探与开发, 2010, 37(4): 430-437.
TIAN Zhongyuan, JIANG Aming, YAN Weilin, et al.Resistivity correction for drilling fluid invasion using LWD and wire-line logging data: A case from high-porosity and low-permeability carbonate reservoirs, DLL Oilfield, Oman[J]. Petroleum Exploration and Development, 2010, 37(4): 430-437.
[22] 王建民, 张三, 杜伟, 等. 低幅度构造对特低渗透油藏油气水富集及开发动态的控制效应[J]. 石油勘探与开发, 2019, 46(4): 728-738.
WANG Jianmin, ZHANG San, DU Wei, et al.The control effect of low-amplitude structure on oil-gas-water enrichment and development performance of ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2019, 46(4): 728-738.
[23] 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发, 2019, 46(5): 803-810.
JIAO Fangzheng.Re-recognition of “unconventional” in unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46(5): 803-810.
[24] 王飞, 边会媛, 赵伦, 等. 复杂碳酸盐岩油藏水淹层电性响应特征与划分标准: 以哈萨克斯坦让纳若尔油田为例[J]. 石油勘探与开发, 2020, 47(6): 1205-1211.
WANG Fei, BIAN Huiyuan, ZHAO Lun, et al.Electrical responses and classification of complex water-flooded layers in carbonate reservoirs: A case study of Zananor Oilfield, Kazakhstan[J]. Petroleum Exploration and Development, 2020, 47(6): 1205-1211.
[25] SIMPSON G A, MENKE J Y.Identifying low contrast-low resistivity pay zones with pulsed neutron capture logs in shaly sand Miocene formations of South Louisiana[R].SPWLA 2010-99170, 2010.
[26] ALI A M, SLIM M, MAHER C, et al.Dynamics of low resistivity pay Acacus Formation: North Africa Formation testing experience and challenges[R].OMC 2015-497, 2015.
[27] FAROUK A, WIBOWO S, AILLUD G, et al.Water saturation uncertainty of tight, microporosity dominated carbonate reservoirs and the impact on hydrocarbon volume: Case study from Abu Dhabi, UAE[R]. SPWLA 2014-L, 2014.
[28] RUIZ J L, GOHARY M E, BESHR H A, et al.Low resistivity pay identification in Lower Cretaceous carbonates, onshore UAE[R]. SPE 188804-MS, 2017.
[29] AMELIO TOLIOE W, B MAT ISMAIL M S, ANGELIA HUTAJULU A, et al. Low resistivity pay evaluation, case study: Thin bed sand-shale lamination reservoirs, Peninsula, Malay Basin[R]. IPTC 18724-MS, 2016.
[30] GYLLENSTEN A, RADWAN E S, AL HAMMADI M I, et al. A new saturation model for low resistivity pay in carbonates[R]. SPWLA MERS-2007-P, 2007.
[31] 罗贝维, 张庆春, 段海岗, 等. 中东地区阿普特阶Shuaiba组碳酸盐岩沉积体系特征及模式探究[J]. 岩石学报, 2019, 35(4): 1291-1301.
LUO Beiwei, ZHANG Qingchun, DUAN Haigang, et al.Geological characteristics of sedimentary system and model of Shuaiba Formation at Aptian Stage, Middle East[J]. Acta Petrologica Sinica, 2019, 35(4): 1291-1301.
[32] 段海岗, 周长迁, 张庆春, 等. 中东油气富集区成藏组合特征及其勘探领域[J]. 地学前缘, 2014, 21(3): 118-126.
DUAN Haigang, ZHOU Changqian, ZHANG Qingchun, et al.The plays character of the abundant hydrocarbon area in the Middle East and their exploration potential[J]. Earth Science Frontiers, 2014, 21(3): 118-126.
[33] YIN S Z, BAI G P, GAO L, et al.A facies and palaeogeography- based approach for analysis of petroleum systems in United Arab Emirates[J]. Journal of Palaeogeography, 2018, 7(2): 168-178.
[34] SALAHUDDIN A A, GIBRATA M A, UCHIDA M, et al.Innovative integration of subsurface data and history matching validation to characterize and model complex carbonate reservoir with high permeability streaks and low resistivity pay issues, onshore Abu Dhabi[R]. SPE 175682-MS, 2015.
[35] 孙文举, 乔占峰, 邵冠铭, 等. 伊拉克哈法亚油田中白垩统Mishrif组MB1-2亚段沉积与储集层构型[J]. 石油勘探与开发, 2020, 47(4): 713-722.
SUN Wenju, QIAO Zhanfeng, SHAO Guanming, et al.Sedimentary and reservoir architectures of MB1-2 sub-member of Middle Cretaceous Mishrif Formation of Halfaya Oilfield in Iraq[J]. Petroleum Exploration and Development, 2020, 47(4): 713-722.
[36] 李伟强, 穆龙新, 赵伦, 等. 滨里海盆地东缘石炭系碳酸盐岩储集层孔喉结构特征及对孔渗关系的影响[J]. 石油勘探与开发, 2020, 47(5): 958-971.
LI Weiqiang, MU Longxin, ZHAO Lun, et al.Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development, 2020, 47(5): 958-971.
[37] 金民东, 李毕松, 朱祥, 等. 四川盆地东北部元坝地区及周缘震旦系灯影组四段储集层特征及主控因素[J]. 石油勘探与开发, 2020, 47(6): 1090-1099.
JIN Mindong, LI Bisong, ZHU Xiang, et al.Characteristics and main controlling factors of reservoirs in the fourth member of Sinian Dengying Formation in Yuanba and its peripheral area, northeastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1090-1099.
[38] 杨威, 魏国齐, 谢武仁, 等. 四川盆地绵竹: 长宁克拉通内裂陷东侧震旦系灯影组四段台缘丘滩体成藏特征与勘探前景[J]. 石油勘探与开发, 2020, 47(6): 1174-1184.
YANG Wei, WEI Guoqi, XIE Wuren, et al.Hydrocarbon accumulation and exploration prospect of mound-shoal complexes on the platform margin of the fourth member of Sinian Dengying Formation in the East of Mianzhu-Changning intracratonic rift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1174-1184.
[39] GRIFFITHS R, CARNEGIE A.Evaluation of low resistivity pay in carbonates? A breakthrough[R]. SPWLA 2006-E, 2006.
[40] 张志松. 阿尔奇公式的理论本原[J]. 地球物理学进展, 2020, 35(4): 1514-1522.
ZHANG Zhisong.Theoretical roots of Archie formulas[J]. Progress in Geophysics, 2020, 35(4): 1514-1522.
[41] 赵丽敏, 周文, 钟原, 等. 伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J]. 石油勘探与开发, 2019, 46(2): 302-311.
ZHAO Limin, ZHOU Wen, ZHONG Yuan, et al.Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H Oilfield, Iraq[J]. Petroleum Exploration and Development, 2019, 46(2): 302-311.
[42] 余义常, 孙龙德, 宋新民, 等. 厚壳蛤滩沉积成岩特征及对储集层的控制作用以伊拉克H油田白垩系Mishrif组为例[J]. 石油勘探与开发, 2018, 45(6): 1007-1019.
YU Yichang, SUN Longde, SONG Xinmin, et al.Sedimentary diagenesis of rudist shoal and its control on reservoirs: A case study of Cretaceous Mishrif Formation, H Oilfield, Iraq[J]. Petroleum Exploration and Development, 2018, 45(6): 1007-1019.
[43] 姜在兴, 孔祥鑫, 杨叶芃, 等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发, 2021, 48(1): 26-37.
JIANG Zaixing, KONG Xiangxin, YANG Yepeng, et al.Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37.
[44] 杨正明, 刘学伟, 李海波, 等. 致密储集层渗吸影响因素分析与渗吸作用效果评价[J]. 石油勘探与开发, 2019, 46(4): 739-745.
YANG Zhengming, LIU Xuewei, LI Haibo, et al.Analysis on the influencing factors of imbibition and the effect evaluation of imbibition in tight reservoirs[J]. Petroleum Exploration and Development, 2019, 46(4): 739-745.
[45] 刘国强. 非常规油气勘探测井评价技术的挑战与对策[J]. 石油勘探与开发, 2021, 48(5): 891-902.
LIU Guoqiang.Challenges and countermeasures of log evaluation in unconventional petroleum exploration[J]. Petroleum Exploration and Development, 2021, 48(5): 891-902.
[46] 李霞, 李潮流, 李波, 等. 致密砂岩岩电响应规律与饱和度评价方法[J]. 石油勘探与开发, 2020, 47(1): 202-212.
LI Xia, LI Chaoliu, LI Bo, et al.Response laws of rock electrical property and saturation evaluation method of tight sandstone[J]. Petroleum Exploration and Development, 2020, 47(1): 202-212.
[47] 吴志宏, 牟伯中, 王修林, 等. 油藏润湿性及其测定方法[J]. 油田化学, 2001, 18(1): 90-96.
WU Zhihong, MU Bozhong, WANG Xiulin, et al.Reservoir wettability and its measurement[J]. Oilfield Chemistry, 2001, 18(1): 90-96.
文章导航

/