油气勘探

柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义

  • 李国欣 ,
  • 朱如凯 ,
  • 张永庶 ,
  • 陈琰 ,
  • 崔景伟 ,
  • 姜营海 ,
  • 伍坤宇 ,
  • 盛军 ,
  • 鲜成钢 ,
  • 刘合
展开
  • 1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    2.中国石油青海油田公司,甘肃敦煌 736202;
    3.中国石油勘探开发研究院,北京 100083
李国欣(1971-),男,山西忻州人,硕士,中国石油青海油田公司教授级高级工程师,主要从事油气勘探开发管理与综合地质研究工作。地址:甘肃省敦煌市七里镇,中国石油青海油田公司,邮政编码:736202。E-mail: guoxinli@petrochina.com.cn

收稿日期: 2021-11-18

  修回日期: 2021-12-24

  网络出版日期: 2022-01-21

基金资助

国家自然科学基金重大项目“陆相页岩油富集主控因素与有利区带评价方法”(42090025); 中国石油天然气股份有限公司重大专项“中国陆相页岩油成藏机理、分布规律与资源潜力研究”(2019E-2601)

Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China

  • LI Guoxin ,
  • ZHU Rukai ,
  • ZHANG Yongshu ,
  • CHEN Yan ,
  • CUI Jingwei ,
  • JIANG Yinghai ,
  • WU Kunyu ,
  • SHENG Jun ,
  • XIAN Chenggang ,
  • LIU He
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. PetroChina Qinghai Oilfield Company, Dunhuang 736202, China;
    3. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

Received date: 2021-11-18

  Revised date: 2021-12-24

  Online published: 2022-01-21

摘要

柴达木盆地英雄岭地区古近系下干柴沟组上段页岩油获勘探重大突破,但咸湖相烃源岩低有机碳含量与页岩油成因机理、页岩油评价标准、资源潜力不清等问题,制约了英雄岭页岩油评价和勘探。把英雄岭地区以富有机质纹层状页岩与灰质白云岩高频间互为特征的页岩型和混积型页岩油类型作为攻关重点,通过大量岩心、钻井、地震及化验资料分析和综合研究,认为英雄岭下干柴沟组上段页岩油具有富氢烃源岩“二段式生烃”且滞留烃量大、多类储集空间发育且储集性能好、源储一体甜点厚度大且含油级别高、盐间与盐下压力系数高且地层能量充足、原油轻质组分多气油比高且品质佳、脆性矿物含量高且可压性好等6个特征。初步建立了以有机碳含量、有机质热演化程度、有效孔隙度、含油饱和度、脆性矿物含量、压力系数、页理密度、埋藏深度等8项参数为主的页岩油评价标准。结合下干柴沟组上段烃源岩厚度、烃源岩面积、油层纵向分布和游离烃含量等参数,初步估算英雄岭地区页岩油资源量达到21×108 t;指出构造稳定区为当前最有利勘探区,落实英雄岭页岩油有利勘探面积800 km2

本文引用格式

李国欣 , 朱如凯 , 张永庶 , 陈琰 , 崔景伟 , 姜营海 , 伍坤宇 , 盛军 , 鲜成钢 , 刘合 . 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义[J]. 石油勘探与开发, 2022 , 49(1) : 18 -31 . DOI: 10.11698/PED.2022.01.02

Abstract

Major breakthroughs of shale oil exploration have been made recently in the upper member of Paleogene Lower Ganchaigou Formation of Yingxiongling area, Qaidam Basin. However, the low total organic carbon content of saline-lacustrine source rock, and unclear genetic mechanism, evaluation criteria and resources potential of the shale oil have restricted the exploration and evaluation of Yingxiongling shale oil. Through analysis of large amounts of core, well drilling, seismic, laboratory test data and integrated study, focusing on the shale and mixed types of shale oil reservoirs characterized by high-frequency interbedded organic-rich laminated shale and limy dolomite, it is concluded that the shale oil in the upper member of Lower Ganchaigou Formation in the Yingxiongling area have six geological characteristics: (1) two-stage hydrocarbon generation of hydrogen-rich source rock and large amount of retained oil; (2) multiple types of reservoir space and good reservoir properties; (3) source-reservoir integration, thick “sweet spot” and high oil-bearing grade; (4) high pressure coefficient between and under salt layers, and sufficient formation energy; (5) high content of light components, high gas-oil ratio, and good quality of the crude oil; (6) high content of brittle minerals and good fracability. The evaluation criterion of shale oil is preliminarily established based on the eight parameters: total organic carbon content, maturity, effective porosity, oil saturation, brittle mineral content, pressure coefficient, lamellation density, and burial depth. Combined with parameters of E32 source rock thickness, area, vertical distribution of oil layers, and free hydrocarbon content, the shale oil resources have been preliminarily estimated as 21×108 t. The structurally stable area is the predominant objective of shale oil exploration and the favorable exploration area for Yingxiongling shale oil is nearly 800 km2.

参考文献

[1] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.
ZOU Caineng, YANG Zhi, CUI Jingwei, et al.Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
[2] 邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 1-17.
ZOU Caineng, ZHU Rukai, BAI Bin, et al.Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 1-17.
[3] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11.
JIA Chengzao.Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[4] 杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探, 2019, 24(5): 560-568.
DU Jinhu, HU Suyun, PANG Zhenglian, et al.The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
[5] 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828.
HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al.Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828.
[6] 孙龙德. 古龙页岩油 (代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7.
SUN Longde.Gulong shale oil (preface)[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 1-7.
[7] 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463.
SUN Longde, LIU He, HE Wenyuan, et al.An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463.
[8] 焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47(6): 1067-1078.
JIAO Fangzheng, ZOU Caineng, YANG Zhi.Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078.
[9] 周庆凡, 杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质, 2012, 33(4): 541-544, 570.
ZHOU Qingfan, YANG Guofeng.Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4): 541-544, 570.
[10] 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28.
LI Maowen, MA Xiaoxiao, JIANG Qigui, et al.Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28.
[11] 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al.Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
[12] 宋明水, 刘惠民, 王勇, 等. 济阳坳陷古近系页岩油富集规律认识与勘探实践[J]. 石油勘探与开发, 2020, 47(2): 225-235.
SONG Mingshui, LIU Huimin, WANG Yong, et al.Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(2): 225-235.
[13] 周立宏, 陈长伟, 韩国猛, 等. 陆相致密油与页岩油藏特征差异性及勘探实践意义: 以渤海湾盆地黄骅坳陷为例[J]. 地球科学, 2021, 46(2): 555-571.
ZHOU Lihong, CHEN Changwei, HAN Guomeng, et al.Difference characteristics between continental shale oil and tight oil and exploration practice: A case from Huanghua Depression, Bohai Bay Basin[J]. Earth Science, 2021, 46(2): 555-571.
[14] 国家市场监督管理总局, 国家标准化管理委员会. 页岩油地质评价方法: GB/T 38718—2020[S]. 北京: 中国标准出版社, 2020.
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Geological evaluating methods for shale oil: GB/T 38718—2020[S]. Beijing: Standards Press of China, 2020.
[15] 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13.
LI Guoxin, ZHU Rukai.Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13.
[16] 赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089.
ZHAO Wenzhi, ZHU Rukai, HU Suyun, et al.Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089.
[17] 金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(6): 1276-1287.
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al.Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287.
[18] 张道伟, 马达德, 陈琰, 等. 柴达木盆地油气地质研究新进展及勘探成果[J]. 新疆石油地质, 2019, 40(5): 505-512.
ZHANG Daowei, MA Dade, CHEN Yan, et al.Research progress on oil and gas geology and exploration practice in Qaidam Basin[J]. Xinjiang Petroleum Geology, 2019, 40(5): 505-512.
[19] 张道伟, 薛建勤, 伍坤宇, 等. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
ZHANG Daowei, XUE Jianqin, WU Kunyu, et al.Shale oil reservoir characteristics and favorable area optimization in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(4): 1-11.
[20] 吴婵, 阎存凤, 李海兵, 等. 柴达木盆地西部新生代构造演化及其对青藏高原北部生长过程的制约[J]. 岩石学报, 2013, 29(6): 2211-2222.
WU Chan, YAN Cunfeng, LI Haibing, et al.Cenozoic tectonic evolution of the western Qaidam Basin and its constrain on the growth of the northern Tibetan Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2211-2222.
[21] 潘家伟, 李海兵, 孙知明, 等. 阿尔金断裂带新生代活动在柴达木盆地中的响应[J]. 岩石学报, 2015, 31(12): 3701-3712.
PAN Jiawei, LI Haibing, SUN Zhiming, et al.Tectonic responses in the Qaidam Basin induced by Cenozoic activities of the Altyn Tagh fault[J]. Acta Petrologica Sinica, 2015, 31(12): 3701-3712.
[22] 韩文霞. 柴达木盆地新生代地层记录的亚洲内陆干旱气候演化[D]. 兰州: 兰州大学, 2008.
HAN Wenxia.Climatic records of Cenozoic sediments from Qaidam Basin and their implications on drying of Asian inland[D]. Lanzhou: Lanzhou University, 2008.
[23] 匡立春, 侯连华, 杨智, 等. 陆相页岩油储层评价关键参数及方法[J]. 石油学报, 2021, 42(1): 1-14.
KUANG Lichun, HOU Lianhua, YANG Zhi, et al.Key parameters and methods of lacustrine shale oil reservoir characterization[J]. Acta Petrolei Sinica, 2021, 42(1): 1-14.
[24] 张斌, 何媛媛, 陈琰, 等. 柴达木盆地西部咸化湖相优质烃源岩形成机理[J]. 石油学报, 2018, 39(6): 674-685.
ZHANG Bin, HE Yuanyuan, CHEN Yan, et al.Formation mechanism of excellent saline lacustrine source rocks in western Qaidam Basin[J]. Acta Petrolei Sinica, 2018, 39(6): 674-685.
[25] 龙国徽, 王艳清, 朱超, 等. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
LONG Guohui, WANG Yanqing, ZHU Chao, et al.Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt, Qaidam Basin[J]. Lithologic Reservoirs, 2021, 33(1): 145-160.
[26] 刘占国, 张永庶, 宋光永, 等. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制[J]. 石油勘探与开发, 2021, 48(1): 68-80.
LIU Zhanguo, ZHANG Yongshu, SONG Guangyong, et al.Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 68-80.
[27] 熊鹰, 伍坤宇, 谭秀成, 等. 湖平面升降对混积咸化湖盆碳酸盐岩储集层的控制: 以柴达木盆地英西地区古近系下干柴沟组上段为例[J]. 古地理学报, 2018, 20(5): 855-868.
XIONG Ying, WU Kunyu, TAN Xiucheng, et al.Influence of lake-level fluctuation on the mixed saline lacustrine carbonate reservoir: A case study from the Upper Member of Paleogene Lower Ganchaigou Formation in the Yingxi area of Qaidam Basin[J]. Journal of Palaeogeography, 2018, 20(5): 855-868.
[28] 乔艳萍, 谭秀成, 刘耘, 等. 咸化湖盆高频湖平面升降特征及地质意义: 以柴达木盆地英西地区下干柴沟组上段为例[J]. 沉积学报, 2020, 38(6): 1152-1165.
QIAO Yanping, TAN Xiucheng, LIU Yun, et al.Characteristics of high-frequency lake-level fluctuations in the saline lacustrine basin and its geological significance: A case study from the upper member of the Paleogene Lower Ganchaigou Formation in the Yingxi area, Qaidam Basin[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1152-1165.
[29] FAN L, MARTIN R, THOMPSON J, et al.An integrated approach for understanding oil and gas reserves potential in eagle ford shale formation[R]. SPE 148751-MS, 2011.
[30] 廖东良. 页岩气层“双甜点”评价方法及工程应用展望[J]. 石油钻探技术, 2020, 48(4): 94-99.
LIAO Dongliang.Evaluation methods and engineering application of the feasibility of “double sweet spots” in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 94-99.
[31] JARVIE D M.Shale resource systems for oil and gas: Part 1: Shale-gas resource systems[M]//BREYER J A. AAPG Memoir: Shale reservoirs-giant resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 2012.
[32] 杨智, 侯连华, 陶士振, 等. 致密油与页岩油形成条件与“甜点区”评价[J]. 石油勘探与开发, 2015, 42(5): 555-565.
YANG Zhi, HOU Lianhua, TAO Shizhen, et al.Formation conditions and “sweet spot” evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555-565.
[33] 白国平, 邱海华, 邓舟舟, 等. 美国页岩油资源分布特征与主控因素研究[J]. 石油实验地质, 2020, 42(4): 524-532.
BAI Guoping, QIU Haihua, DENG Zhouzhou, et al.Distribution and main controls for shale oil resources in USA[J]. Petroleum Geology and Experiment, 2020, 42(4): 524-532.
[34] 赵贤正, 周立宏, 蒲秀刚, 等. 湖相页岩滞留烃形成条件与富集模式: 以渤海湾盆地黄骅坳陷古近系为例[J]. 石油勘探与开发, 2020, 47(5): 856-869.
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al.Formation conditions and enrichment model of retained petroleum in lacustrine shale: A case study of the Paleogene in Huanghua Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(5): 856-869.
[35] 侯连华, 于志超, 罗霞, 等. 页岩油气最终采收量地质主控因素: 以美国海湾盆地鹰滩页岩为例[J]. 石油勘探与开发, 2021, 48(3): 654-665.
HOU Lianhua, YU Zhichao, LUO Xia, et al.Key geological factors controlling the estimated ultimate recovery of shale oil and gas: A case study of the Eagle Ford shale, Gulf Coast Basin, USA[J]. Petroleum Exploration and Development, 2021, 48(3): 654-665.
[36] 陈晓智, 陈桂华, 肖钢, 等. 北美TMS页岩油地质评价及勘探有利区预测[J]. 中国石油勘探, 2014, 19(2): 77-84.
CHEN Xiaozhi, CHEN Guihua, XIAO Gang, et al.Geological evaluation prediction of favorable exploration zones of TMS shale oil in North America[J]. China Petroleum Exploration, 2014, 19(2): 77-84.
[37] 王茂林, 程鹏, 田辉, 等. 页岩油储层评价指标体系[J]. 地球化学, 2017, 46(2): 178-190.
WANG Maolin, CHENG Peng, TIAN Hui, et al.Evaluation index system of shale oil reservoirs[J]. Geochimica, 2017, 46(2): 178-190.
文章导航

/