[1] 雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019, 46(1): 139-145.
LEI Qun, WENG Dingwei, LUO Jianhui, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019, 46(1): 139-145.
[2] 王瑞和, 倪红坚, 宋维强, 等. 超临界二氧化碳钻井基础研究进展[J]. 石油钻探技术, 2018, 46(2): 1-9.
WANG Ruihe, NI Hongjian, SONG Weiqiang, et al. The development of fundamental research on supercritical carbon dioxide drilling[J]. Petroleum Drilling Techniques, 2018, 46(2): 1-9.
[3] HE Zhengguo, TIAN Shouceng, LI Gensheng, et al. The pressurization effect of jet fracturing using supercritical carbon dioxide[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 842-851.
[4] 宋维强, 倪红坚, 王瑞和, 等. 超临界二氧化碳控压钻井控压方法[J]. 石油勘探与开发, 2016, 43(5): 787-792.
SONG Weiqiang, NI Hongjian, WANG Ruihe, et al. Pressure controlling method for managed pressure drilling with supercritical carbon dioxide as the circulation fluid[J]. Petroleum Exploration and Development, 2016, 43(5): 787-792.
[5] TIAN Shouceng, HE Zhenguo, LI Gensheng, et al. Influences of ambient pressure and nozzle-to-target distance on SC-CO2 jet impingement and perforation[J]. Journal of Natural Gas Science and Engineering, 2015, 29: 232-242.
[6] KOLLE J J. Coiled-tubing drilling with supercritical carbon dioxide[R]. SPE 65534, 2000.
[7] KOLLE J J, MARVIN M. Jet-assisted coiled tubing drilling with supercritical carbon dioxide[R]. New Orleans, USA: ETCE/OMAE 2000 Joint Conference: Energy for the New Millennium, 2000.
[8] 沈忠厚, 王海柱, 李根生. 超临界CO2连续油管钻井可行性分析[J]. 石油勘探与开发, 2010, 37(6): 743-747.
SHEN Zhonghou, WANG Haizhu, LI Gensheng. Feasibility analysis of coiled tubing drilling with supercritical carbon dioxide[J]. Petroleum Exploration and Development, 2010, 37(6): 743-747.
[9] 王海柱, 沈忠厚, 李根生. 超临界CO2钻井井筒压力温度耦合计算[J]. 石油勘探与开发, 2011, 38(1): 97-102.
WANG Haizhu, SHEN Zhonghou, LI Gensheng. Wellbore temperature and pressure coupling calculation of drilling with supercritical carbon dioxide[J]. Petroleum Exploration and Development, 2011, 38(1): 97-102.
[10] ZHANG Xinwei, LU Yiyu, TANG Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378.
[11] LI Xiaojiang, LI Gensheng, YU Wei, et al. Thermal effects of liquid/supercritical carbon dioxide arising from fluid expansion in fracturing[J]. SPE Journal, 2018, 23(6): 2026-2040.
[12] SHI Xian, JIANG Shu, WANG Zhixuan, et al. Application of nanoindentation technology for characterizing the mechanical properties of shale before and after supercritical CO2 fluid treatment[J]. Journal of CO2 Utilization, 2020, 37: 158-172.
[13] ZHOU Junping, LIU Guojun, JIANG Yongdong, et al. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: An experimental study[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 369-377.
[14] CAI Can, KANG Yong, WANG Xiaochuan, et al. Mechanism of supercritical carbon dioxide (SC-CO2) hydro-jet fracturing[J]. Journal of CO2 Utilization, 2018, 26: 575-587.
[15] LI Xiang, FENG Zijun, HAN Gang, et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(2): 63-76.
[16] 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727.
HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727.
[17] 黄飞, 卢义玉, 汤积仁, 等. 超临界二氧化碳射流冲蚀页岩试验研究[J]. 岩石力学与工程学报, 2015, 34(4): 787-794.
HUANG Fei, LU Yiyu, TANG Jiren, et al. Research on erosion of shale impacted by supercritical carbon dioxide jet[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 787-794.
[18] 杜玉昆, 王瑞和, 倪红坚, 等. 超临界二氧化碳射流破岩试验[J].中国石油大学学报(自然科学版), 2012, 36(4): 93-96.
DU Yukun, WANG Ruihe, NI Hongjian, et al. Rock-breaking experiment with supercritical carbon dioxide jet[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(4): 93-96.
[19] WANG Haizhu, LI Gensheng, SHEN Zhonghou, et al. Experiment on rock breaking with supercritical carbon dioxide jet[J]. Journal of Petroleum Science and Engineering, 2015, 127: 305-310.
[20] LI Mukun, NI Hongjian, XIAO Caiyun, et al. Influences of supercritical carbon dioxide jets on damage mechanisms of rock[J]. Arabian Journal for Science and Engineering, 2018, 43(5): 2641-2658.
[21] LI Mukun, NI Hongjian, WANG Ruihe, et al. The effect of thermal stresses on the relation between rock failure and temperature and pressure of supercritical carbon dioxide jet[J]. Greenhouse Gases: Science and Technology, 2018, 8(2): 218-237.
[22] LI Mukun, NI Hongjian, WANG Ruihe, et al. Comparative simulation research on the stress characteristics of supercritical carbon dioxide jets, nitrogen jets and water jets[J]. Engineering Applications of Computational Fluid Mechanics, 2017, 11(1): 357-370.
[23] NI Hongjian, WANG Ruihe. A theoretical study of rock drilling with a high pressure water jet[J]. Petroleum Science, 2004, 1(4): 72-76.
[24] SIMPSON C. Deformation of granitic rocks across the brittle-ductile transition[J]. Journal of Structural Geology, 1985, 7(5): 503-511.
[25] FARIA R, AZENHA M, FIGUEIRAS J A. Modelling of concrete at early ages: Application to an externally restrained slab[J]. Cement and Concrete Composites, 2006, 28(6): 572-585.
[26] HEARD H C. Thermal stress cracking in granite[J]. Journal of Geophysical Research, 1989, 94(B2): 1745-1758.
[27] 陈颙, 吴晓东, 张福勤. 岩石热开裂的实验研究[J]. 科学通报, 1999, 44(8): 880-883.
CHEN Yong, WU Xiaodong, ZHANG Fuqin. Experimental research of rock thermal cracking[J]. Chinese Science Bulletin, 1999, 44(8): 880-883.
[28] KIM S E, CHOUDHURY D, PATEL B. Computations of complex turbulent flows using the commercial code FLUENT[M]. Berlin, Germany: Springer, 1999.
[29] MOHAN B, YANG W, CHOU S. Cavitation in injector nozzle holes: A parametric study[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(1): 70-81.
[30] SHIH T H, LIOU W W, SHABBIR A, et al. A new eddy-viscosity model for high Reynolds number turbulent flows: Model development and validation[J]. Computers Fluids, 1995, 24(3): 227-238.
[31] WASEWAR K L, SARATHI J V. CFD modelling and simulation of jet mixed tanks[J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(2): 155-171.
[32] TOGUN H, SHKARAH A, KAZI S N, et al. CFD simulation of heat transfer and turbulent fluid flow over a double forward-facing step[J]. Mathematical Problems in Engineering, 2013, 2013: 1-10.
[33] FERREIRA V G, BRANDI A C, KUROKAWA F A, et al. Incompressible turbulent flow simulation using the κ-ɛ model and upwind schemes[J]. Mathematical Problems in Engineering, 2007, 2007: 1-26.
[34] XIE Yonghui, GAO Keke, LAN Jibing, et al. Computational fluid dynamics modeling three-dimensional unsteady turbulent flow and excitation force in partial admission air turbine[J]. Mathematical Problems in Engineering, 2013, 2013: 1-11.
[35] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
[36] SPAN R, LEMMON E W, JACOBSEN R T, et al. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1 000 K and pressures to 2 200 MPa[J]. Journal of Physical and Chemical Reference Data, 2000, 29(6): 1361-1433.
[37] WAGNER W, PRU A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535.
[38] FENGHOUR A, WAKEHAM W A, VESOVIC V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-39.
[39] LEMMON E W, JACOBSEN R T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air[J]. International Journal of Thermophysics, 2004, 25(1): 21-69.
[40] KESTIN J, SENGERS J V, KAMGAR-PARSI B, et al. Thermophysical properties of fluid H2O[J]. Journal of Physical and Chemical Reference Data, 1984, 13(1): 175-183.
[41] 时贤, 蒋恕, 卢双舫, 等. 利用纳米压痕实验研究层理性页岩岩石力学性质: 以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发, 2019, 46(1): 155-164.
SHI Xian, JIANG Shu, LU Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J]. Petroleum Exploration and Development, 2019, 46(1): 155-164.
[42] KRAFT L, ENGQVIST H, HERMANSSON L. Early-age deformation, drying shrinkage and thermal dilation in a new type of dental restorative material based on calcium aluminate cement[J]. Cement and Concrete Research, 2004, 34(3): 439-446.
[43] LI Qingbin, YUAN Libo, ANSARI F. Model for measurement of thermal expansion coefficient of concrete by fiber optic sensor[J]. International Journal of Solids and Structures, 2002, 39(11): 2927-2937.
[44] BRANDT A M. Cement-based composites: Materials, mechanical properties and performance[M]. Boca Raton, Florida: CRC Press, 2009.
[45] 徐中华, 郑马嘉, 刘忠华, 等. 四川盆地南部地区龙马溪组深层页岩岩石物理特征[J]. 石油勘探与开发, 2020, 47(6): 1100-1110.
XU Zhonghua, ZHENG Majia, LIU Zhonghua, et al. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1100-1110.
[46] CLAUSER C, HUENGES E. Rock physics & phase relations: A handbook of physical constants[M]. Washington, USA: American Geophysical Union, 1995.
[47] LI Mukun, NI Hongjian, CAO Yuguang, et al. Flow energy transformation and dissipation mechanisms of carbon dioxide, nitrogen, and water jets[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103650.