石油工程

超临界二氧化碳射流破岩的热流固耦合机理

  • 李木坤 ,
  • 王刚 ,
  • 程卫民 ,
  • 浦仕杰 ,
  • 倪红坚 ,
  • 时贤
展开
  • 1.山东科技大学安全与环境工程学院,山东青岛 266590;
    2.中国石油青海油田公司采油一厂,青海格尔木 816499;
    3.中国石油大学(华东)石油工程学院,山东青岛 266580
李木坤(1985-),男,山东潍坊人,博士,山东科技大学讲师,主要从事射流理论与利用技术及脉冲射流结构设计与优化方面的研究工作。地址:山东省青岛市黄岛区前湾港路579号,山东科技大学安全与环境工程学院,邮政编码:266590。E-mail:724119710@qq.com

收稿日期: 2020-12-19

  修回日期: 2021-09-02

  网络出版日期: 2021-11-25

基金资助

国家自然科学基金项目(51674158,51704324,51934004)

Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking

  • LI Mukun ,
  • WANG Gang ,
  • CHENG Weimin ,
  • PU Shijie ,
  • NI Hongjian ,
  • SHI Xian
Expand
  • 1. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
    2. No.1 Oil Production Plant, Qinghai Oilfield Company, PetroChina, Qinghai 816499, China;
    3. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Received date: 2020-12-19

  Revised date: 2021-09-02

  Online published: 2021-11-25

摘要

针对超临界二氧化碳(SC-CO2)射流压力和温差的协同破岩机制,建立了热流固耦合岩石应力计算模型,验证了模型的有效性,研究了SC-CO2、水和氮气射流的流场和岩石应力随喷距的变化。随着喷距增加,SC-CO2射流压力减小,射流温差增大;SC-CO2射流压力高于氮气射流,与水射流相差不大;无因次喷距大于10时,SC-CO2射流温差分别约是水和氮气射流的5倍和2.5倍以上;更大的温度应力是SC-CO2射流破岩效果优于水和氮气射流的主要原因,SC-CO2射流时有更大的岩石应力、有效破岩喷距和破岩面积;喷距较小时SC-CO2射流压力起主要破岩作用,喷距较大时射流温差起主要破岩作用;SC-CO2短时间射流下岩石表面产生拉伸和剪切破坏,长时间射流下岩石内部同时产生大面积的拉伸破坏,SC-CO2射流是一种高效的体积破岩方法。图19参47

本文引用格式

李木坤 , 王刚 , 程卫民 , 浦仕杰 , 倪红坚 , 时贤 . 超临界二氧化碳射流破岩的热流固耦合机理[J]. 石油勘探与开发, 2021 , 48(6) : 1258 -1268 . DOI: 10.11698/PED.2021.06.18

Abstract

Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide (SC-CO2) jet pressure and temperature difference, a heat-fluid-solid calculation model of rock-breaking stress was established and verified to be effective, and the variations of jet flow field and rock stress with jet standoff distance of SC-CO2, water and nitrogen were studied. With the increase of jet standoff distance, the jet pressure of SC-CO2 decreases and the jet temperature difference increases. The SC-CO2 jet is higher in pressure than the nitrogen jet and differs little from the water jet. Temperature difference of SC-CO2 jet is 5 times that of water jet and more than 2.5 times that of nitrogen jet when the jet standoff distance is larger than 10. The temperature stress is the main reason why SC-CO2 jet is superior to water and nitrogen jets in rock-breaking. The rock under the SC-CO2 jet has greater rock stress, effective rock-breaking jet standoff distance and rock-breaking area. The jet pressure plays a major role in rock-breaking when the jet standoff distance is small, while the jet temperature difference plays a major role in rock-breaking when the jet standoff distance is large. The SC-CO2 jet is an efficient volume rock-breaking method, which results in tensile and shear failure on the rock surface under short time jet and large area tensile failure inside the rock simultaneously under long time jet.

参考文献

[1] 雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019, 46(1): 139-145.
LEI Qun, WENG Dingwei, LUO Jianhui, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019, 46(1): 139-145.
[2] 王瑞和, 倪红坚, 宋维强, 等. 超临界二氧化碳钻井基础研究进展[J]. 石油钻探技术, 2018, 46(2): 1-9.
WANG Ruihe, NI Hongjian, SONG Weiqiang, et al. The development of fundamental research on supercritical carbon dioxide drilling[J]. Petroleum Drilling Techniques, 2018, 46(2): 1-9.
[3] HE Zhengguo, TIAN Shouceng, LI Gensheng, et al. The pressurization effect of jet fracturing using supercritical carbon dioxide[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 842-851.
[4] 宋维强, 倪红坚, 王瑞和, 等. 超临界二氧化碳控压钻井控压方法[J]. 石油勘探与开发, 2016, 43(5): 787-792.
SONG Weiqiang, NI Hongjian, WANG Ruihe, et al. Pressure controlling method for managed pressure drilling with supercritical carbon dioxide as the circulation fluid[J]. Petroleum Exploration and Development, 2016, 43(5): 787-792.
[5] TIAN Shouceng, HE Zhenguo, LI Gensheng, et al. Influences of ambient pressure and nozzle-to-target distance on SC-CO2 jet impingement and perforation[J]. Journal of Natural Gas Science and Engineering, 2015, 29: 232-242.
[6] KOLLE J J. Coiled-tubing drilling with supercritical carbon dioxide[R]. SPE 65534, 2000.
[7] KOLLE J J, MARVIN M. Jet-assisted coiled tubing drilling with supercritical carbon dioxide[R]. New Orleans, USA: ETCE/OMAE 2000 Joint Conference: Energy for the New Millennium, 2000.
[8] 沈忠厚, 王海柱, 李根生. 超临界CO2连续油管钻井可行性分析[J]. 石油勘探与开发, 2010, 37(6): 743-747.
SHEN Zhonghou, WANG Haizhu, LI Gensheng. Feasibility analysis of coiled tubing drilling with supercritical carbon dioxide[J]. Petroleum Exploration and Development, 2010, 37(6): 743-747.
[9] 王海柱, 沈忠厚, 李根生. 超临界CO2钻井井筒压力温度耦合计算[J]. 石油勘探与开发, 2011, 38(1): 97-102.
WANG Haizhu, SHEN Zhonghou, LI Gensheng. Wellbore temperature and pressure coupling calculation of drilling with supercritical carbon dioxide[J]. Petroleum Exploration and Development, 2011, 38(1): 97-102.
[10] ZHANG Xinwei, LU Yiyu, TANG Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378.
[11] LI Xiaojiang, LI Gensheng, YU Wei, et al. Thermal effects of liquid/supercritical carbon dioxide arising from fluid expansion in fracturing[J]. SPE Journal, 2018, 23(6): 2026-2040.
[12] SHI Xian, JIANG Shu, WANG Zhixuan, et al. Application of nanoindentation technology for characterizing the mechanical properties of shale before and after supercritical CO2 fluid treatment[J]. Journal of CO2 Utilization, 2020, 37: 158-172.
[13] ZHOU Junping, LIU Guojun, JIANG Yongdong, et al. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: An experimental study[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 369-377.
[14] CAI Can, KANG Yong, WANG Xiaochuan, et al. Mechanism of supercritical carbon dioxide (SC-CO2) hydro-jet fracturing[J]. Journal of CO2 Utilization, 2018, 26: 575-587.
[15] LI Xiang, FENG Zijun, HAN Gang, et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(2): 63-76.
[16] 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727.
HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727.
[17] 黄飞, 卢义玉, 汤积仁, 等. 超临界二氧化碳射流冲蚀页岩试验研究[J]. 岩石力学与工程学报, 2015, 34(4): 787-794.
HUANG Fei, LU Yiyu, TANG Jiren, et al. Research on erosion of shale impacted by supercritical carbon dioxide jet[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 787-794.
[18] 杜玉昆, 王瑞和, 倪红坚, 等. 超临界二氧化碳射流破岩试验[J].中国石油大学学报(自然科学版), 2012, 36(4): 93-96.
DU Yukun, WANG Ruihe, NI Hongjian, et al. Rock-breaking experiment with supercritical carbon dioxide jet[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(4): 93-96.
[19] WANG Haizhu, LI Gensheng, SHEN Zhonghou, et al. Experiment on rock breaking with supercritical carbon dioxide jet[J]. Journal of Petroleum Science and Engineering, 2015, 127: 305-310.
[20] LI Mukun, NI Hongjian, XIAO Caiyun, et al. Influences of supercritical carbon dioxide jets on damage mechanisms of rock[J]. Arabian Journal for Science and Engineering, 2018, 43(5): 2641-2658.
[21] LI Mukun, NI Hongjian, WANG Ruihe, et al. The effect of thermal stresses on the relation between rock failure and temperature and pressure of supercritical carbon dioxide jet[J]. Greenhouse Gases: Science and Technology, 2018, 8(2): 218-237.
[22] LI Mukun, NI Hongjian, WANG Ruihe, et al. Comparative simulation research on the stress characteristics of supercritical carbon dioxide jets, nitrogen jets and water jets[J]. Engineering Applications of Computational Fluid Mechanics, 2017, 11(1): 357-370.
[23] NI Hongjian, WANG Ruihe. A theoretical study of rock drilling with a high pressure water jet[J]. Petroleum Science, 2004, 1(4): 72-76.
[24] SIMPSON C. Deformation of granitic rocks across the brittle-ductile transition[J]. Journal of Structural Geology, 1985, 7(5): 503-511.
[25] FARIA R, AZENHA M, FIGUEIRAS J A. Modelling of concrete at early ages: Application to an externally restrained slab[J]. Cement and Concrete Composites, 2006, 28(6): 572-585.
[26] HEARD H C. Thermal stress cracking in granite[J]. Journal of Geophysical Research, 1989, 94(B2): 1745-1758.
[27] 陈颙, 吴晓东, 张福勤. 岩石热开裂的实验研究[J]. 科学通报, 1999, 44(8): 880-883.
CHEN Yong, WU Xiaodong, ZHANG Fuqin. Experimental research of rock thermal cracking[J]. Chinese Science Bulletin, 1999, 44(8): 880-883.
[28] KIM S E, CHOUDHURY D, PATEL B. Computations of complex turbulent flows using the commercial code FLUENT[M]. Berlin, Germany: Springer, 1999.
[29] MOHAN B, YANG W, CHOU S. Cavitation in injector nozzle holes: A parametric study[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(1): 70-81.
[30] SHIH T H, LIOU W W, SHABBIR A, et al. A new eddy-viscosity model for high Reynolds number turbulent flows: Model development and validation[J]. Computers Fluids, 1995, 24(3): 227-238.
[31] WASEWAR K L, SARATHI J V. CFD modelling and simulation of jet mixed tanks[J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(2): 155-171.
[32] TOGUN H, SHKARAH A, KAZI S N, et al. CFD simulation of heat transfer and turbulent fluid flow over a double forward-facing step[J]. Mathematical Problems in Engineering, 2013, 2013: 1-10.
[33] FERREIRA V G, BRANDI A C, KUROKAWA F A, et al. Incompressible turbulent flow simulation using the κ-ɛ model and upwind schemes[J]. Mathematical Problems in Engineering, 2007, 2007: 1-26.
[34] XIE Yonghui, GAO Keke, LAN Jibing, et al. Computational fluid dynamics modeling three-dimensional unsteady turbulent flow and excitation force in partial admission air turbine[J]. Mathematical Problems in Engineering, 2013, 2013: 1-11.
[35] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
[36] SPAN R, LEMMON E W, JACOBSEN R T, et al. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1 000 K and pressures to 2 200 MPa[J]. Journal of Physical and Chemical Reference Data, 2000, 29(6): 1361-1433.
[37] WAGNER W, PRU A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535.
[38] FENGHOUR A, WAKEHAM W A, VESOVIC V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-39.
[39] LEMMON E W, JACOBSEN R T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air[J]. International Journal of Thermophysics, 2004, 25(1): 21-69.
[40] KESTIN J, SENGERS J V, KAMGAR-PARSI B, et al. Thermophysical properties of fluid H2O[J]. Journal of Physical and Chemical Reference Data, 1984, 13(1): 175-183.
[41] 时贤, 蒋恕, 卢双舫, 等. 利用纳米压痕实验研究层理性页岩岩石力学性质: 以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发, 2019, 46(1): 155-164.
SHI Xian, JIANG Shu, LU Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J]. Petroleum Exploration and Development, 2019, 46(1): 155-164.
[42] KRAFT L, ENGQVIST H, HERMANSSON L. Early-age deformation, drying shrinkage and thermal dilation in a new type of dental restorative material based on calcium aluminate cement[J]. Cement and Concrete Research, 2004, 34(3): 439-446.
[43] LI Qingbin, YUAN Libo, ANSARI F. Model for measurement of thermal expansion coefficient of concrete by fiber optic sensor[J]. International Journal of Solids and Structures, 2002, 39(11): 2927-2937.
[44] BRANDT A M. Cement-based composites: Materials, mechanical properties and performance[M]. Boca Raton, Florida: CRC Press, 2009.
[45] 徐中华, 郑马嘉, 刘忠华, 等. 四川盆地南部地区龙马溪组深层页岩岩石物理特征[J]. 石油勘探与开发, 2020, 47(6): 1100-1110.
XU Zhonghua, ZHENG Majia, LIU Zhonghua, et al. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1100-1110.
[46] CLAUSER C, HUENGES E. Rock physics & phase relations: A handbook of physical constants[M]. Washington, USA: American Geophysical Union, 1995.
[47] LI Mukun, NI Hongjian, CAO Yuguang, et al. Flow energy transformation and dissipation mechanisms of carbon dioxide, nitrogen, and water jets[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103650.
文章导航

/