油气田开发

基于油砂温敏特征的蒸汽辅助重力泄油蒸汽腔监测

  • 高云峰 ,
  • 范廷恩 ,
  • 高静怀 ,
  • 李辉 ,
  • 董洪超 ,
  • 马时刚 ,
  • 岳庆峰
展开
  • 1.中海油研究总院有限责任公司,北京 100028;
    2.海洋石油高效开发国家重点实验室,北京 100028;
    3.西安交通大学电子与信息工程学院,海洋石油勘探国家工程实验室,西安 710049;
    4.中海石油(中国)有限公司开发生产部,北京 100010;
    5.大庆油田有限责任公司采油工程研究院,黑龙江大庆163453
高云峰(1974-),男,吉林磐石人,博士,中海油研究总院高级工程师,主要从事油藏地球物理技术应用研究。地址:北京市朝阳区芍药居海油大厦,中海油研究总院,邮政编码:100028。E-mail:gaoyf@cnooc.com.cn

收稿日期: 2021-03-02

  修回日期: 2021-09-30

  网络出版日期: 2021-11-25

基金资助

中海石油(中国)有限公司综合科研项目“海上中深层油藏地球物理技术及其应用研究”(YXKY-2019-ZY-05)

Monitoring of steam chamber in steam-assisted gravity drainage based on temperature sensitivity of oil sand

  • GAO Yunfeng ,
  • FAN Ting'en ,
  • GAO Jinghuai ,
  • LI Hui ,
  • DONG Hongchao ,
  • MA Shigang ,
  • YUE Qingfeng
Expand
  • 1. CNOOC Research Institute Co., Ltd., Beijing 100028, China;
    2. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China;
    3. School of Electronic and Information Engineering and National Engineering Laboratory for Offshore Oil Exploration, Xi'an Jiaotong University, Xi'an 710049, China;
    4. Exploitation and Production Department, CNOOC, Beijing 100010, China;
    5. Daqing Oilfield Production Engineering Research Institute, Daqing 163453, China

Received date: 2021-03-02

  Revised date: 2021-09-30

  Online published: 2021-11-25

摘要

利用加拿大Kinosis油砂典型岩心开展了温敏岩石物理特征实验测量、模型计算和频散现象分析,应用于研究区油砂蒸汽辅助重力泄油(SAGD)开发蒸汽腔发育形态的时移地震监测研究。研究表明,对于弱胶结、低阻抗的油砂,利用聚醚醚酮树脂代替常规钛合金设计超声波基座进行超声波测试,可以提高信号能量、信噪比,得到清晰的初至波形。随着温度的变化,研究区稠油可出现玻璃态、准固态和液态这3种相态,玻璃态温度点和液态温度点分别为-34.4 ℃和49.0 ℃,准固态的稠油具有明显频散现象。高含油饱和度油砂的弹性特征主要由稠油性质决定,低含油饱和度油砂的弹性特征主要受骨架颗粒刚度控制。油砂的弹性参数具有明显的温敏特征,将温度从10 ℃提高到175 ℃,其纵、横波速度都会明显降低。基于实验数据建立油砂纵波阻抗与温度之间的定量关系图版,并通过时移地震反演实现了研究区目的层段蒸汽腔温度变化预测。图11表2参37

本文引用格式

高云峰 , 范廷恩 , 高静怀 , 李辉 , 董洪超 , 马时刚 , 岳庆峰 . 基于油砂温敏特征的蒸汽辅助重力泄油蒸汽腔监测[J]. 石油勘探与开发, 2021 , 48(6) : 1224 -1231 . DOI: 10.11698/PED.2021.06.14

Abstract

Thermosensitivity experiments and simulation calculation were conducted on typical oil sand core samples from Kinosis, Canada to predict the steam chamber development with time-lapse seismic data during the steam assisted gravity drainage (SAGD). Using ultrasonic base made of polyether ether ketone resin instead of titanium alloy can improve the signal energy and signal-to-noise ratio and get clear first arrival; with the rise of temperature, heavy oil changes from glass state (at -34.4 ℃), to quasi-solid state, and to liquid state (at 49.0 ℃) gradually; the quasi-solid heavy oil has significant frequency dispersion. For the sand sample with high oil saturation, its elastic property depends mainly on the nature of the heavy oil, while for the sand sample with low oil saturation, the elastic property depends on stiffness of the rock matrix. The elastic property of the oil sand is sensitive to temperature noticeably, when the temperature increases from 10 ℃ to 175 ℃, the oil sand samples decrease in compressional and shear wave velocities significantly. Based on the experimental data, the quantitative relationship between the compressional wave impedance of the oil sand and temperature was worked out, and the temperature variation of the steam chamber in the study section was predicted by time-lapse seismic inversion.

参考文献

[1] 邹才能. 非常规油气地质[M]. 2版. 北京: 地质出版社, 2013: 12-15.
ZOU Caineng. Unconventional petroleum geology[M]. 2nd ed. Beijing: Geological Publishing House, 2013: 12-15.
[2] 穆龙新. 重油和油砂开发技术新进展[M]. 北京: 石油工业出版社, 2012.
MU Longxin. New progress of heavy oil and oil sands development technology[M]. Beijing: Petroleum Industry Press, 2012.
[3] 穆龙新, 陈亚强, 许安著, 等. 中国石油海外油气田开发技术进展与发展方向[J]. 石油勘探与开发, 2020, 47(1): 120-128.
MU Longxin, CHEN Yaqiang, XU Anzhu, et al. Technological progress and development directions of PetroChina overseas oil and gas field production[J]. Petroleum Exploration and Development, 2020, 47(1): 120-128.
[4] 思娜, 安雷, 邓辉, 等. SAGD重油、油砂开采技术的创新进展及思考[J]. 石油钻采工艺, 2016, 38(1): 98-104.
SI Na, AN Lei, DENG Hui, et al. Innovation progress and thinking of SAGD technology in heavy oil and oil sand[J]. Oil Drilling & Production Technology, 2016, 38(1): 98-104.
[5] BUTLER R M. A new approach to the modelling of steam-assisted gravity drainage[J]. Journal of Canadian Petroleum Technology, 1985, 24(3): 42-51.
[6] BUTLER R M. Thermal recovery of oil and bitumen[M]. New Jersey: Prentice Hall Publishing Company, 1991: 35-39.
[7] SHAD S, ENG P, YAZDI M M. Wellbore modeling and design of nozzle-based inflow control device (ICD) for SAGD wells[R]. SPE 170145, 2014.
[8] STAHL R M, SMITH J D, HOBBS S, et al. Application of intelligent well technology to a SAGD producer: Firebag field trail[R]. SPE 170153, 2014.
[9] 梁光跃, 刘尚奇, 沈平平, 等. 油砂蒸汽辅助重力泄油汽液界面智能调控模型优选[J]. 石油勘探与开发, 2016, 43(2): 275-280.
LIANG Guangyue, LIU Shangqi, SHEN Pingping, et al. A new optimization method for steam-liquid level intelligent control model in oil sands steam-assisted gravity drainage (SAGD) process[J]. Petroleum Exploration and Development, 2016, 43(2): 275-280.
[10] 周游, 鹿腾, 武守亚, 等. 双水平井蒸汽辅助重力泄油蒸汽腔扩展速度计算模型及其应用[J]. 石油勘探与开发, 2019, 46(2): 334-341.
ZHOU You, LU Teng, WU Shouya, et al. Models of steam-assisted gravity drainage (SAGD) steam chamber expanding velocity in double horizontal wells and its application[J]. Petroleum Exploration and Development, 2019, 46(2): 334-341.
[11] ASHRAFI O, NAVARRI P, HUGHES R, et al. Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant[J]. Energy, 2016, 111: 981-990.
[12] WEI S, CHENG L, HUANG W, et al. Prediction for steam chamber development and production performance in SAGD process[J]. Journal of Natural Gas Science & Engineering, 2014, 19(7): 303-310.
[13] 武毅, 张丽萍, 李晓漫, 等. 超稠油SAGD开发蒸汽腔形成及扩展规律研究[J]. 特种油气藏, 2007, 14(6): 40-43.
WU Yi, ZHANG Liping, LI Xiaoman, et al. Study of steam chamber growth and expansion in SAGD for ultra heavy oil[J]. Special Oil and Gas Reservoirs, 2007, 14(6): 40-43.
[14] 李秀峦, 刘昊, 罗健, 等. 非均质油藏双水平井SAGD三维物理模拟[J]. 石油学报, 2014, 35(3): 536-542.
LI Xiuluan, LIU Hao, LUO Jian, et al. 3D physical simulation on dual horizontal well SAGD in heterogeneous reservoir[J]. Acta Petrolei Sinca, 2014, 35(3): 536-542.
[15] 马德胜, 郭嘉, 昝成, 等. 蒸汽辅助重力泄油改善汽腔发育均匀性物理模拟[J]. 石油勘探与开发, 2013, 40(2): 188-193.
MA Desheng, GUO Jia, ZAN Cheng, et al. Physical simulation of improving the uniformity of steam chamber growth in the steam assisted gravity drainage[J]. Petroleum Exploration and Development, 2013, 40(2): 188-193.
[16] LI Hui, HAN Dehua, YUAN Hemin, et al. Porosity of heavy oil sand: Laboratory measurement and bound analysis[J]. Geophysics, 2016, 81(2): 83-90.
[17] 甘利灯, 姚逢昌, 杜文辉, 等. 水驱油藏四维地震技术[J]. 石油勘探与开发, 2007, 34(4): 437-444.
GAN Lideng, YAO Fengchang, DU Wenhui, et al. 4D seismic technology for water flooding reservoirs[J]. Petroleum Exploration and Development, 2007, 34(4): 437-444.
[18] 张会来, 范廷恩, 胡光义, 等. 水驱油藏时移地震叠前匹配反演:西非深水扇A油田时移地震研究实例[J]. 石油地球物理勘探, 2015, 50(3): 530-535, 564.
ZHANG Huilai, FAN Ting'en, HU Guangyi, et al. Time-lapse seismic matching inversion in water flooding reservoir: A case of deep-water fan in the Oilfield A, West Africa[J]. Oil Geophysical Prospecting, 2015, 50(3): 530-535, 564.
[19] GAO Yunfeng, HU Guangyi, FAN Ting'en, et al. Application of non-repeated time-lapse seismic technology in the XJ Oilfield, South China Sea[C]//Proceedings of the International Field Exploration and Development Conference 2019. Xi'an: SSGG, 2019: 1589-1604.
[20] 陆红梅, 徐海, 沃玉进, 等. 时移地震“相对差异法”定量预测疏松砂岩油藏含油饱和度: 以西非深海泽塔油田为例[J]. 石油勘探与开发, 2019, 46(2): 409-416.
LU Hongmei, XU Hai, WO Yujin, et al. Quantitative prediction of oil saturation of unconsolidated sandstone reservoir based on time-lapse seismic “relative difference method”: Taking Zeta oil field in West Africa as an example[J]. Petroleum Exploration and Development, 2019, 46(2): 409-416.
[21] 李春霞, 曹代勇, 黄旭日, 等. 时移地震在SAGD蒸汽腔数值模拟中的应用[J]. 特种油气藏, 2016, 23(6): 86-89, 145.
LI Chunxia, CAO Daiyong, HUANG Xuri, et al. Application of time-lapse seismic in SAGD steam chamber simulation[J]. Special Oil & Gas Reservoirs, 2016, 23(6): 86-89, 145.
[22] 高云峰, 王宗俊, 李绪宣, 等. 多层系油气藏时移地震匹配处理技术[J]. 物探与化探, 2019, 43(1): 183-188.
GAO Yunfeng, WANG Zongjun, LI Xuxuan, et al. Time-lapsed seismic matching processing technology for multi-reservoir[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 183-188.
[23] ALVAREZ E, MACBETH C, BRAIN J. Quantifying remaining oil saturation using time-lapse seismic amplitude changes at fluid contacts[J]. Petroleum Geoscience, 2017, 23(2): 238-250.
[24] LUMLEY D, LANDRØ M, VASCONCELOS I, et al. Advances in time-lapse geophysics: Introduction[J]. Geophysics, 2015, 80(2): WAi-WAii.
[25] IAN J. 4D seismic: Past, present, and future[J]. The Leading Edge, 2017, 36(5): 386-392.
[26] JOHNSTON D H. Practical applications of time-lapse seismic data[M]. Tulsa: SEG, 2013.
[27] EIKREM K S, NVDAL G, JAKOBSEN M. Iterated extended Kalman filter method for time‐lapse seismic full‐waveform inversion[J]. Geophysical Prospecting, 2019, 67(2): 379-394.
[28] 杜向东. 中国海上地震勘探技术新进展[J]. 石油物探, 2018, 57(3): 321-331.
DU Xiangdong. Progress of seismic exploration technology in offshore China[J]. Geophysical Prospecting for Petroleum, 2018, 57(3): 321-331.
[29] SINHA M, SCHUSTER G T. Seismic time‐lapse imaging using interferometric least‐squares migration: Case study[J]. Geophysical Prospecting, 2018, 66(8): 1457-1474.
[30] 周家雄, 张亮, 刘巍, 等. 时移地震气藏监测技术在崖城13-1气田的应用[J]. 石油物探, 2020, 59(4): 637-646.
ZHOU Jiaxiong, ZHANG Liang, LIU Wei, et al. Application of a time-lapse seismic gas reservoir monitoring in the Yacheng 13-1 gas field[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 637-646.
[31] HAN Dehua, YAO Qiuliang, ZHAO Huizhu, et al. Challenges in heavy oil sand measurements[R]. Houston, USA: Sponsored Program Annual Meeting for Fluid/DHI, 2007.
[32] LI Hui, ZHAO Luanxiao, HAN Dehua, et al. Elastic properties of heavy oil sands: Effects of temperature, pressure, and microstructure[J]. Geophysics, 2016, 81(4): 453-464.
[33] YUAN Hemin, HAN Dehua, ZHANG Weimin. Heavy oil sands modeling during thermal production and its seismic response[J]. Geophysics, 2016, 81(1): 57-70.
[34] 胡光义, 许磊, 王宗俊, 等. 加拿大阿萨巴斯卡Kinosis区域下白垩统McMurray组内河口湾复合点坝砂体构型解剖[J]. 古地理学报, 2018, 20(6): 1001-1012.
HU Guangyi, XU Lei, WANG Zongjun, et al. Architectural analysis of compound point-bar sandbody in inner estuary of the Lower Cretaceous McMurray Formation in Kinosis area, Athabasca, Canada[J]. Journal of Palaeogeography, 2018, 20(6): 1001-1012.
[35] 尹艳树, 陈和平, 黄继新, 等. 泥质夹层的三维预测与地质模型的等效粗化表征: 以加拿大麦凯河油砂储集层为例[J]. 石油勘探与开发, 2020, 47(6): 1198-1204, 1234.
YIN Yanshu, CHEN Heping, HUANG Jixin, et al. Muddy interlayer forecasting and an equivalent upscaling method based on tortuous paths: A case study of Mackay River oil sand reservoirs in Canada[J]. Petroleum Exploration and Development, 2020, 47(6): 1198-1204, 1234.
[36] 王海峰, 宋来明, 范廷恩, 等. 加拿大Athabasca油砂矿区KN区块白垩系McMurray组中段沉积特征[J]. 东北石油大学学报, 2019, 43(5): 66-76.
WANG Haifeng, SONG Laiming, FAN Ting'en, et al. Sedimentary characteristics of McMurray Formation middle member in KN Area, Athabasca Oil Sand Mine, Canada[J]. Journal of Northeast Petroleum University, 2019, 43(5): 66-76.
[37] 刘振坤, 王晖, 王盘根, 等. 加拿大油砂SAGD开发储量品质评价关键参数研究[J]. 海洋地质前沿, 2019, 35(12): 55-61.
LIU Zhenkun, WANG Hui, WANG Pangen, et al. Key parameters of reserve quality evaluation for oil sand SAGD development in Canada[J]. Marine Geology Frontiers, 2019, 35(12): 55-61.
文章导航

/