[1] 邹才能. 非常规油气地质[M]. 2版. 北京: 地质出版社, 2013: 12-15.
ZOU Caineng. Unconventional petroleum geology[M]. 2nd ed. Beijing: Geological Publishing House, 2013: 12-15.
[2] 穆龙新. 重油和油砂开发技术新进展[M]. 北京: 石油工业出版社, 2012.
MU Longxin. New progress of heavy oil and oil sands development technology[M]. Beijing: Petroleum Industry Press, 2012.
[3] 穆龙新, 陈亚强, 许安著, 等. 中国石油海外油气田开发技术进展与发展方向[J]. 石油勘探与开发, 2020, 47(1): 120-128.
MU Longxin, CHEN Yaqiang, XU Anzhu, et al. Technological progress and development directions of PetroChina overseas oil and gas field production[J]. Petroleum Exploration and Development, 2020, 47(1): 120-128.
[4] 思娜, 安雷, 邓辉, 等. SAGD重油、油砂开采技术的创新进展及思考[J]. 石油钻采工艺, 2016, 38(1): 98-104.
SI Na, AN Lei, DENG Hui, et al. Innovation progress and thinking of SAGD technology in heavy oil and oil sand[J]. Oil Drilling & Production Technology, 2016, 38(1): 98-104.
[5] BUTLER R M. A new approach to the modelling of steam-assisted gravity drainage[J]. Journal of Canadian Petroleum Technology, 1985, 24(3): 42-51.
[6] BUTLER R M. Thermal recovery of oil and bitumen[M]. New Jersey: Prentice Hall Publishing Company, 1991: 35-39.
[7] SHAD S, ENG P, YAZDI M M. Wellbore modeling and design of nozzle-based inflow control device (ICD) for SAGD wells[R]. SPE 170145, 2014.
[8] STAHL R M, SMITH J D, HOBBS S, et al. Application of intelligent well technology to a SAGD producer: Firebag field trail[R]. SPE 170153, 2014.
[9] 梁光跃, 刘尚奇, 沈平平, 等. 油砂蒸汽辅助重力泄油汽液界面智能调控模型优选[J]. 石油勘探与开发, 2016, 43(2): 275-280.
LIANG Guangyue, LIU Shangqi, SHEN Pingping, et al. A new optimization method for steam-liquid level intelligent control model in oil sands steam-assisted gravity drainage (SAGD) process[J]. Petroleum Exploration and Development, 2016, 43(2): 275-280.
[10] 周游, 鹿腾, 武守亚, 等. 双水平井蒸汽辅助重力泄油蒸汽腔扩展速度计算模型及其应用[J]. 石油勘探与开发, 2019, 46(2): 334-341.
ZHOU You, LU Teng, WU Shouya, et al. Models of steam-assisted gravity drainage (SAGD) steam chamber expanding velocity in double horizontal wells and its application[J]. Petroleum Exploration and Development, 2019, 46(2): 334-341.
[11] ASHRAFI O, NAVARRI P, HUGHES R, et al. Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant[J]. Energy, 2016, 111: 981-990.
[12] WEI S, CHENG L, HUANG W, et al. Prediction for steam chamber development and production performance in SAGD process[J]. Journal of Natural Gas Science & Engineering, 2014, 19(7): 303-310.
[13] 武毅, 张丽萍, 李晓漫, 等. 超稠油SAGD开发蒸汽腔形成及扩展规律研究[J]. 特种油气藏, 2007, 14(6): 40-43.
WU Yi, ZHANG Liping, LI Xiaoman, et al. Study of steam chamber growth and expansion in SAGD for ultra heavy oil[J]. Special Oil and Gas Reservoirs, 2007, 14(6): 40-43.
[14] 李秀峦, 刘昊, 罗健, 等. 非均质油藏双水平井SAGD三维物理模拟[J]. 石油学报, 2014, 35(3): 536-542.
LI Xiuluan, LIU Hao, LUO Jian, et al. 3D physical simulation on dual horizontal well SAGD in heterogeneous reservoir[J]. Acta Petrolei Sinca, 2014, 35(3): 536-542.
[15] 马德胜, 郭嘉, 昝成, 等. 蒸汽辅助重力泄油改善汽腔发育均匀性物理模拟[J]. 石油勘探与开发, 2013, 40(2): 188-193.
MA Desheng, GUO Jia, ZAN Cheng, et al. Physical simulation of improving the uniformity of steam chamber growth in the steam assisted gravity drainage[J]. Petroleum Exploration and Development, 2013, 40(2): 188-193.
[16] LI Hui, HAN Dehua, YUAN Hemin, et al. Porosity of heavy oil sand: Laboratory measurement and bound analysis[J]. Geophysics, 2016, 81(2): 83-90.
[17] 甘利灯, 姚逢昌, 杜文辉, 等. 水驱油藏四维地震技术[J]. 石油勘探与开发, 2007, 34(4): 437-444.
GAN Lideng, YAO Fengchang, DU Wenhui, et al. 4D seismic technology for water flooding reservoirs[J]. Petroleum Exploration and Development, 2007, 34(4): 437-444.
[18] 张会来, 范廷恩, 胡光义, 等. 水驱油藏时移地震叠前匹配反演:西非深水扇A油田时移地震研究实例[J]. 石油地球物理勘探, 2015, 50(3): 530-535, 564.
ZHANG Huilai, FAN Ting'en, HU Guangyi, et al. Time-lapse seismic matching inversion in water flooding reservoir: A case of deep-water fan in the Oilfield A, West Africa[J]. Oil Geophysical Prospecting, 2015, 50(3): 530-535, 564.
[19] GAO Yunfeng, HU Guangyi, FAN Ting'en, et al. Application of non-repeated time-lapse seismic technology in the XJ Oilfield, South China Sea[C]//Proceedings of the International Field Exploration and Development Conference 2019. Xi'an: SSGG, 2019: 1589-1604.
[20] 陆红梅, 徐海, 沃玉进, 等. 时移地震“相对差异法”定量预测疏松砂岩油藏含油饱和度: 以西非深海泽塔油田为例[J]. 石油勘探与开发, 2019, 46(2): 409-416.
LU Hongmei, XU Hai, WO Yujin, et al. Quantitative prediction of oil saturation of unconsolidated sandstone reservoir based on time-lapse seismic “relative difference method”: Taking Zeta oil field in West Africa as an example[J]. Petroleum Exploration and Development, 2019, 46(2): 409-416.
[21] 李春霞, 曹代勇, 黄旭日, 等. 时移地震在SAGD蒸汽腔数值模拟中的应用[J]. 特种油气藏, 2016, 23(6): 86-89, 145.
LI Chunxia, CAO Daiyong, HUANG Xuri, et al. Application of time-lapse seismic in SAGD steam chamber simulation[J]. Special Oil & Gas Reservoirs, 2016, 23(6): 86-89, 145.
[22] 高云峰, 王宗俊, 李绪宣, 等. 多层系油气藏时移地震匹配处理技术[J]. 物探与化探, 2019, 43(1): 183-188.
GAO Yunfeng, WANG Zongjun, LI Xuxuan, et al. Time-lapsed seismic matching processing technology for multi-reservoir[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 183-188.
[23] ALVAREZ E, MACBETH C, BRAIN J. Quantifying remaining oil saturation using time-lapse seismic amplitude changes at fluid contacts[J]. Petroleum Geoscience, 2017, 23(2): 238-250.
[24] LUMLEY D, LANDRØ M, VASCONCELOS I, et al. Advances in time-lapse geophysics: Introduction[J]. Geophysics, 2015, 80(2): WAi-WAii.
[25] IAN J. 4D seismic: Past, present, and future[J]. The Leading Edge, 2017, 36(5): 386-392.
[26] JOHNSTON D H. Practical applications of time-lapse seismic data[M]. Tulsa: SEG, 2013.
[27] EIKREM K S, NVDAL G, JAKOBSEN M. Iterated extended Kalman filter method for time‐lapse seismic full‐waveform inversion[J]. Geophysical Prospecting, 2019, 67(2): 379-394.
[28] 杜向东. 中国海上地震勘探技术新进展[J]. 石油物探, 2018, 57(3): 321-331.
DU Xiangdong. Progress of seismic exploration technology in offshore China[J]. Geophysical Prospecting for Petroleum, 2018, 57(3): 321-331.
[29] SINHA M, SCHUSTER G T. Seismic time‐lapse imaging using interferometric least‐squares migration: Case study[J]. Geophysical Prospecting, 2018, 66(8): 1457-1474.
[30] 周家雄, 张亮, 刘巍, 等. 时移地震气藏监测技术在崖城13-1气田的应用[J]. 石油物探, 2020, 59(4): 637-646.
ZHOU Jiaxiong, ZHANG Liang, LIU Wei, et al. Application of a time-lapse seismic gas reservoir monitoring in the Yacheng 13-1 gas field[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 637-646.
[31] HAN Dehua, YAO Qiuliang, ZHAO Huizhu, et al. Challenges in heavy oil sand measurements[R]. Houston, USA: Sponsored Program Annual Meeting for Fluid/DHI, 2007.
[32] LI Hui, ZHAO Luanxiao, HAN Dehua, et al. Elastic properties of heavy oil sands: Effects of temperature, pressure, and microstructure[J]. Geophysics, 2016, 81(4): 453-464.
[33] YUAN Hemin, HAN Dehua, ZHANG Weimin. Heavy oil sands modeling during thermal production and its seismic response[J]. Geophysics, 2016, 81(1): 57-70.
[34] 胡光义, 许磊, 王宗俊, 等. 加拿大阿萨巴斯卡Kinosis区域下白垩统McMurray组内河口湾复合点坝砂体构型解剖[J]. 古地理学报, 2018, 20(6): 1001-1012.
HU Guangyi, XU Lei, WANG Zongjun, et al. Architectural analysis of compound point-bar sandbody in inner estuary of the Lower Cretaceous McMurray Formation in Kinosis area, Athabasca, Canada[J]. Journal of Palaeogeography, 2018, 20(6): 1001-1012.
[35] 尹艳树, 陈和平, 黄继新, 等. 泥质夹层的三维预测与地质模型的等效粗化表征: 以加拿大麦凯河油砂储集层为例[J]. 石油勘探与开发, 2020, 47(6): 1198-1204, 1234.
YIN Yanshu, CHEN Heping, HUANG Jixin, et al. Muddy interlayer forecasting and an equivalent upscaling method based on tortuous paths: A case study of Mackay River oil sand reservoirs in Canada[J]. Petroleum Exploration and Development, 2020, 47(6): 1198-1204, 1234.
[36] 王海峰, 宋来明, 范廷恩, 等. 加拿大Athabasca油砂矿区KN区块白垩系McMurray组中段沉积特征[J]. 东北石油大学学报, 2019, 43(5): 66-76.
WANG Haifeng, SONG Laiming, FAN Ting'en, et al. Sedimentary characteristics of McMurray Formation middle member in KN Area, Athabasca Oil Sand Mine, Canada[J]. Journal of Northeast Petroleum University, 2019, 43(5): 66-76.
[37] 刘振坤, 王晖, 王盘根, 等. 加拿大油砂SAGD开发储量品质评价关键参数研究[J]. 海洋地质前沿, 2019, 35(12): 55-61.
LIU Zhenkun, WANG Hui, WANG Pangen, et al. Key parameters of reserve quality evaluation for oil sand SAGD development in Canada[J]. Marine Geology Frontiers, 2019, 35(12): 55-61.