[1] 郭平, 苑志旺, 廖广志. 注气驱油技术发展现状与启示[J]. 天然气工业, 2009, 29(8): 92-96.
GUO Ping, YUAN Zhiwang, LIAO Guangzhi. Status and enlightenment of international gas injection EOR technology[J]. Natural Gas Industry, 2009, 29(8): 92-96.
[2] 王敬, 姬泽敏, 刘慧卿, 等. 裂缝-孔洞型储集层注氮气辅助重力泄油实验[J]. 石油勘探与开发, 2019, 46(2): 342-353.
WANG Jing, JI Zemin, LIU Huiqing, et al. Experiments on nitrogen assisted gravity drainage in fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2019, 46(2): 342-353.
[3] 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727.
HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727.
[4] 廖广志, 王红庄, 王正茂, 等. 注空气全温度域原油氧化反应特征及开发方式[J]. 石油勘探与开发, 2020, 47(2): 334-340.
LIAO Guangzhi, WANG Hongzhuang, WANG Zhengmao, et al. Oil oxidation in the whole temperature regions during oil reservoir air injection and development methods[J]. Petroleum Exploration and Development, 2020, 47(2): 334-340.
[5] MOORE R, MEHTA S, URSENBACH M. A guide to high pressure air injection (HPAI) based oil recovery[R]. SPE 75207, 2002.
[6] KOK M V, GUL K G. Thermal characteristics and kinetics of crude oils and SARA fractions[J]. Thermochimica Acta, 2013, 569: 66-70.
[7] REN S R, GREAVES M, RATHBONE R. Air injection LTO process: An IOR technique for light-oil reservoirs[J]. SPE Journal, 2002, 7(1): 90-99.
[8] 蒋有伟, 张义堂, 刘尚奇, 等. 低渗透油藏注空气开发驱油机理[J]. 石油勘探与开发, 2010, 37(4): 471-476.
JIANG Youwei, ZHANG Yitang, LIU Shangqi, et al. Displacement mechanisms of air injection in low permeability reservoirs[J]. Petroleum Exploration and Development, 2010, 37(4): 471-476.
[9] 侯胜明, 刘印华, 于洪敏, 等. 注空气过程轻质原油低温氧化动力学[J]. 中国石油大学学报(自然科学版), 2011, 35(1): 169-173.
HOU Shengming, LIU Yinhua, YU Hongmin, et al. Kinetics of low temperature oxidation of light oil in air injection process[J]. Journal of China University of Petroleum (Natural Science Edition), 2011, 35(1): 169-173.
[10] 王正茂, 廖广志, 蒲万芬, 等. 注空气开发中地层原油氧化反应特征[J]. 石油学报, 2018, 39(3): 314-319.
WANG Zhengmao, LIAO Guangzhi, PU Wanfen, et al. Oxidation reaction features of formation crude oil in air injection development[J]. Acta Petrolei Sinica, 2018, 39(3): 314-319.
[11] 廖广志, 杨怀军, 蒋有伟, 等. 减氧空气驱适用范围及氧含量界限[J]. 石油勘探与开发, 2018, 45(1): 105-110.
LIAO Guangzhi, YANG Huaijun, JIANG Youwei, et al. Applicable scope of oxygen-reduced air flooding and the limit of oxygen content[J]. Petroleum Exploration and Development, 2018, 45(1): 105-110.
[12] 中国石油化工集团公司. 石油沥青四组分测定法: NB/SH/T 0509—2010[S]. 北京: 国家能源局, 2010.
China Petrochemical Corporation. Test method for separation of asphalt into four fractions: NB/SH/T 0509—2010[S]. Beijing: National Energy Administration, 2010.
[13] 龙安林, 张茂林, 宋惠馨, 等. 减氧空气驱低温氧化反应机理研究: 以尕斯库勒油田E31油藏为例[J]. 能源与环保, 2020, 42(4): 105-109, 117.
LONG Anlin, ZHANG Maolin, SONG Huixin, et al. Study on mechanism of low temperature oxidation reaction of deoxidized air drive: Taking E31 reservoir of Gaskule oilfield as an example[J]. China Energy and Environmental Protection, 2020, 42(4): 105-109, 117.
[14] KONG D, LIAN P, ZHU W, et al. Pore-scale investigation of immiscible gas-assisted gravity drainage[J]. Physics of Fluids, 2020, 32(12): 122004.
[15] CHEN H, LIU X, JIA N, et al. The impact of the oil character and quartz sands on the thermal behavior and kinetics of crude oil[J]. Energy, 2020, 210(11): 118573.
[16] MOTHÉ C G, DE MIRANDA I C. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods[J]. Journal of Thermal Analysis and Calorimetry, 2013, 113(2): 497-505.
[17] ZHAO S, PU W, VARFOLOMEEV M A, et al. Comprehensive investigations into low temperature oxidation of heavy crude oil[J]. Journal of Petroleum Science and Engineering, 2018, 171: 835-842.
[18] PU W, PANG S, JIA H. Using DSC/TG/DTA techniques to re-evaluate the effect of clays on crude oil oxidation kinetics[J]. Journal of Petroleum Science and Engineering, 2015, 134: 123-130.
[19] 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2008.
HU Rongzu, SHI Qizhen. Thermal analysis kinetics[M]. Beijing: Science Press, 2008.
[20] LI P, LIU Z, LI M, et al. Investigation on the low temperature oxidation of light oil for safely enhancing oil recovery at high temperatures and pressures[J]. Energy, 2020, 200: 117546.
[21] 陈小龙, 李宜强, 廖广志, 等. 减氧空气重力稳定驱驱替机理及与采收率的关系[J]. 石油勘探与开发, 2020, 47(4): 780-788.
CHEN Xiaolong, LI Yiqiang, LIAO Guangzhi, et al. Experimental investigation on stable displacement mechanism and oil recovery enhancement of oxygen-reduced air assisted gravity drainage[J]. Petroleum Exploration and Development, 2020, 47(4): 780-788.
[22] GRÉAVES M, REN S, XIA T. New air injection technology for IOR operations in light and heavy oil reservoirs[R]. Kuala Lumpur: SPE Asia Pacific Improved Oil Recovery Conference, 1999.
[23] MEREDITH W, KELLAND S J, JONES D. Influence of biodegradation on crude oil acidity and carboxylic acid composition[J]. Organic Geochemistry, 2000, 31(11): 1059-1073.
[24] KIM S, STANFORD L A, RODGERS R P, et al. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2005, 36(8): 1117-1134.
[25] ROJAS-RUIZ F A, BOTTIA-RAMIREZ H, RODRÍGUEZ- RODRÍGUEZ L, et al. Exploring compositional changes along in situ combustion and their implications on emulsion stabilization via Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)[J]. Energy & Fuels, 2017, 31(11): 11995-12003.
[26] WATSON J, JONES D, SWANNELL R, et al. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes[J]. Organic Geochemistry, 2002, 33(10): 1153-1169.
[27] LI Y, GUAN C, CHEN X, et al. The contribution of low temperature oxidation of heavy crude oil to oil displacement efficiency during air injection in low permeability reservoirs[J]. Petroleum Science and Technology, 2021: 1-8.
[28] WANG Q, PEI S, SONG H, et al. Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release[J]. Journal of Petroleum Science and Engineering, 2021, 197: 107957.