油气田开发

轻质原油减氧空气驱低温氧化特征

  • 齐桓 ,
  • 李宜强 ,
  • 陈小龙 ,
  • 龙安林 ,
  • 魏莉 ,
  • 李杰 ,
  • 罗江浩 ,
  • 孙雪彬 ,
  • 汤翔 ,
  • 管错
展开
  • 1.油气资源与探测国家重点实验室(中国石油大学(北京)),北京 102249;
    2.中国石油大学(北京)石油工程学院,北京 102249;
    3.中国石油青海油田公司勘探开发研究院,甘肃敦煌 736200;
    4.海洋石油开发国家重点实验室,北京100028
齐桓(1996-),男,黑龙江大庆人,中国石油大学(北京)在读博士研究生,主要从事气驱提高采收率方面的研究工作。地址:北京市昌平区府学路18号,中国石油大学(北京)石油工程学院,邮政编码:102249。E-mail: 810897350@qq.com

收稿日期: 2021-04-09

  修回日期: 2021-09-10

  网络出版日期: 2021-11-25

Low-temperature oxidation of light crude oil in oxygen-reduced air flooding

  • QI Huan ,
  • LI Yiqiang ,
  • CHEN Xiaolong ,
  • LONG Anlin ,
  • WEI Li ,
  • LI Jie ,
  • LUO Jianghao ,
  • SUN Xuebin ,
  • TANG Xiang ,
  • GUAN Cuo
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China;
    2. Petroleum Engineering Institute, China University of Petroleum (Beijing), Beijing 102249, China;
    3. Exploration and Development Research Institute, PetroChina Qinghai Oilfield Company, Dunhuang 736200, China;
    4. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China

Received date: 2021-04-09

  Revised date: 2021-09-10

  Online published: 2021-11-25

摘要

选取青海油田尕斯库勒古近系下干柴沟组下段油藏轻质原油,开展了热动力学分析实验并计算了原油氧化的活化能;通过原油静态氧化实验模拟了多孔介质中原油的氧化过程,通过傅立叶变换离子回旋共振质谱与气相色谱联用对比了原油低温氧化前后的组分变化;将减氧空气动态驱替实验与核磁共振技术相结合,分析了减氧空气驱原油动用程度。原油氧化全过程可划分为轻烃挥发、低温氧化、燃料沉积与高温氧化4个阶段,高温氧化阶段所需活化能最大,燃料沉积段所需活化能次之,低温氧化段所需活化能最低;参与反应气体中的氧浓度与反应所需活化能呈负相关,氧浓度越高,氧化反应所需平均活化能越低;原油与含氧空气发生低温氧化反应,在产生大量热能的同时,还生成部分CO、CO2、CH4气体,在储集层内形成烟道气驱,具有一定的混相、降黏、降低界面张力、促进原油膨胀的作用,有助于提高采收率;在油藏温度合适的情况下,对所有尺度的孔喉区间而言,减氧空气驱的采出程度均比氮气驱高,应优先选用空气/减氧空气驱开发方式。图13表2参28

本文引用格式

齐桓 , 李宜强 , 陈小龙 , 龙安林 , 魏莉 , 李杰 , 罗江浩 , 孙雪彬 , 汤翔 , 管错 . 轻质原油减氧空气驱低温氧化特征[J]. 石油勘探与开发, 2021 , 48(6) : 1210 -1217 . DOI: 10.11698/PED.2021.06.12

Abstract

Light crude oil from the lower member of the Paleogene Lower Ganchaigou Formation of Gaskule in Qinghai oilfield was selected to carry out thermal kinetic analysis experiments and calculate the activation energy during the oil oxidation process. The oxidation process of crude oil in porous medium was modeled by crude oil static oxidation experiment, and the component changes of crude oil before and after low temperature oxidation were compared through Fourier transform ion cyclotron resonance mass spectrometry and gas chromatography; the dynamic displacement experiment of oxygen-reduced air was combined with NMR technology to analyze the oil recovery degree of oxygen-reduced air flooding. The whole process of crude oil oxidation can be divided into four stages: light hydrocarbon volatilization, low temperature oxidation, fuel deposition, and high temperature oxidation; the high temperature oxidation stage needs the highest activation energy, followed by the fuel deposition stage, and the low temperature oxidation stage needs the lowest activation energy; the concentration of oxygen in the reaction is negatively correlated with the activation energy required for the reaction; the higher the oxygen concentration, the lower the average activation energy required for oxidation reaction is; the low-temperature oxidation reaction between crude oil and air generates a large amount of heat and CO, CO2 and CH4, forming flue gas drive in the reservoir, which has certain effects of mixing phases, reducing viscosity, lowering interfacial tension and promoting expansion of crude oil, and thus helps enhance the oil recovery rate. Under suitable reservoir temperature condition, the degree of recovery of oxygen-reduced air flooding is higher than that of nitrogen flooding for all scales of pore throat, and the air/oxygen-reduced air flooding development should be preferred.

参考文献

[1] 郭平, 苑志旺, 廖广志. 注气驱油技术发展现状与启示[J]. 天然气工业, 2009, 29(8): 92-96.
GUO Ping, YUAN Zhiwang, LIAO Guangzhi. Status and enlightenment of international gas injection EOR technology[J]. Natural Gas Industry, 2009, 29(8): 92-96.
[2] 王敬, 姬泽敏, 刘慧卿, 等. 裂缝-孔洞型储集层注氮气辅助重力泄油实验[J]. 石油勘探与开发, 2019, 46(2): 342-353.
WANG Jing, JI Zemin, LIU Huiqing, et al. Experiments on nitrogen assisted gravity drainage in fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2019, 46(2): 342-353.
[3] 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727.
HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727.
[4] 廖广志, 王红庄, 王正茂, 等. 注空气全温度域原油氧化反应特征及开发方式[J]. 石油勘探与开发, 2020, 47(2): 334-340.
LIAO Guangzhi, WANG Hongzhuang, WANG Zhengmao, et al. Oil oxidation in the whole temperature regions during oil reservoir air injection and development methods[J]. Petroleum Exploration and Development, 2020, 47(2): 334-340.
[5] MOORE R, MEHTA S, URSENBACH M. A guide to high pressure air injection (HPAI) based oil recovery[R]. SPE 75207, 2002.
[6] KOK M V, GUL K G. Thermal characteristics and kinetics of crude oils and SARA fractions[J]. Thermochimica Acta, 2013, 569: 66-70.
[7] REN S R, GREAVES M, RATHBONE R. Air injection LTO process: An IOR technique for light-oil reservoirs[J]. SPE Journal, 2002, 7(1): 90-99.
[8] 蒋有伟, 张义堂, 刘尚奇, 等. 低渗透油藏注空气开发驱油机理[J]. 石油勘探与开发, 2010, 37(4): 471-476.
JIANG Youwei, ZHANG Yitang, LIU Shangqi, et al. Displacement mechanisms of air injection in low permeability reservoirs[J]. Petroleum Exploration and Development, 2010, 37(4): 471-476.
[9] 侯胜明, 刘印华, 于洪敏, 等. 注空气过程轻质原油低温氧化动力学[J]. 中国石油大学学报(自然科学版), 2011, 35(1): 169-173.
HOU Shengming, LIU Yinhua, YU Hongmin, et al. Kinetics of low temperature oxidation of light oil in air injection process[J]. Journal of China University of Petroleum (Natural Science Edition), 2011, 35(1): 169-173.
[10] 王正茂, 廖广志, 蒲万芬, 等. 注空气开发中地层原油氧化反应特征[J]. 石油学报, 2018, 39(3): 314-319.
WANG Zhengmao, LIAO Guangzhi, PU Wanfen, et al. Oxidation reaction features of formation crude oil in air injection development[J]. Acta Petrolei Sinica, 2018, 39(3): 314-319.
[11] 廖广志, 杨怀军, 蒋有伟, 等. 减氧空气驱适用范围及氧含量界限[J]. 石油勘探与开发, 2018, 45(1): 105-110.
LIAO Guangzhi, YANG Huaijun, JIANG Youwei, et al. Applicable scope of oxygen-reduced air flooding and the limit of oxygen content[J]. Petroleum Exploration and Development, 2018, 45(1): 105-110.
[12] 中国石油化工集团公司. 石油沥青四组分测定法: NB/SH/T 0509—2010[S]. 北京: 国家能源局, 2010.
China Petrochemical Corporation. Test method for separation of asphalt into four fractions: NB/SH/T 0509—2010[S]. Beijing: National Energy Administration, 2010.
[13] 龙安林, 张茂林, 宋惠馨, 等. 减氧空气驱低温氧化反应机理研究: 以尕斯库勒油田E31油藏为例[J]. 能源与环保, 2020, 42(4): 105-109, 117.
LONG Anlin, ZHANG Maolin, SONG Huixin, et al. Study on mechanism of low temperature oxidation reaction of deoxidized air drive: Taking E31 reservoir of Gaskule oilfield as an example[J]. China Energy and Environmental Protection, 2020, 42(4): 105-109, 117.
[14] KONG D, LIAN P, ZHU W, et al. Pore-scale investigation of immiscible gas-assisted gravity drainage[J]. Physics of Fluids, 2020, 32(12): 122004.
[15] CHEN H, LIU X, JIA N, et al. The impact of the oil character and quartz sands on the thermal behavior and kinetics of crude oil[J]. Energy, 2020, 210(11): 118573.
[16] MOTHÉ C G, DE MIRANDA I C. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods[J]. Journal of Thermal Analysis and Calorimetry, 2013, 113(2): 497-505.
[17] ZHAO S, PU W, VARFOLOMEEV M A, et al. Comprehensive investigations into low temperature oxidation of heavy crude oil[J]. Journal of Petroleum Science and Engineering, 2018, 171: 835-842.
[18] PU W, PANG S, JIA H. Using DSC/TG/DTA techniques to re-evaluate the effect of clays on crude oil oxidation kinetics[J]. Journal of Petroleum Science and Engineering, 2015, 134: 123-130.
[19] 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2008.
HU Rongzu, SHI Qizhen. Thermal analysis kinetics[M]. Beijing: Science Press, 2008.
[20] LI P, LIU Z, LI M, et al. Investigation on the low temperature oxidation of light oil for safely enhancing oil recovery at high temperatures and pressures[J]. Energy, 2020, 200: 117546.
[21] 陈小龙, 李宜强, 廖广志, 等. 减氧空气重力稳定驱驱替机理及与采收率的关系[J]. 石油勘探与开发, 2020, 47(4): 780-788.
CHEN Xiaolong, LI Yiqiang, LIAO Guangzhi, et al. Experimental investigation on stable displacement mechanism and oil recovery enhancement of oxygen-reduced air assisted gravity drainage[J]. Petroleum Exploration and Development, 2020, 47(4): 780-788.
[22] GRÉAVES M, REN S, XIA T. New air injection technology for IOR operations in light and heavy oil reservoirs[R]. Kuala Lumpur: SPE Asia Pacific Improved Oil Recovery Conference, 1999.
[23] MEREDITH W, KELLAND S J, JONES D. Influence of biodegradation on crude oil acidity and carboxylic acid composition[J]. Organic Geochemistry, 2000, 31(11): 1059-1073.
[24] KIM S, STANFORD L A, RODGERS R P, et al. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2005, 36(8): 1117-1134.
[25] ROJAS-RUIZ F A, BOTTIA-RAMIREZ H, RODRÍGUEZ- RODRÍGUEZ L, et al. Exploring compositional changes along in situ combustion and their implications on emulsion stabilization via Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)[J]. Energy & Fuels, 2017, 31(11): 11995-12003.
[26] WATSON J, JONES D, SWANNELL R, et al. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes[J]. Organic Geochemistry, 2002, 33(10): 1153-1169.
[27] LI Y, GUAN C, CHEN X, et al. The contribution of low temperature oxidation of heavy crude oil to oil displacement efficiency during air injection in low permeability reservoirs[J]. Petroleum Science and Technology, 2021: 1-8.
[28] WANG Q, PEI S, SONG H, et al. Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release[J]. Journal of Petroleum Science and Engineering, 2021, 197: 107957.
文章导航

/