油气勘探

从原型盆地叠加演化过程讨论沉积盆地分类及含油气性

  • 窦立荣 ,
  • 温志新
展开
  • 中国石油勘探开发研究院,北京 100083
窦立荣(1965-),男,江苏扬州人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事全球油气资源评价与海外重点领域油气勘探关键技术研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院,邮政编码:100083。E-mail: dlirong@petrochina.com.cn

收稿日期: 2021-02-19

  修回日期: 2021-11-04

  网络出版日期: 2021-11-25

基金资助

中国石油集团前瞻性基础性技术攻关项目(2021D31)

Classification and exploration potential of sedimentary basins based on the superposition and evolution process of prototype basins

  • DOU Lirong ,
  • WEN Zhixin
Expand
  • Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

Received date: 2021-02-19

  Revised date: 2021-11-04

  Online published: 2021-11-25

摘要

从威尔逊旋回原理出发,通过解剖全球483个沉积盆地前寒武纪以来成盆演化历史,并基于拉张、挤压及剪切3种应力环境,探讨了原型盆地的类型划分、叠加演化及沉积充填模式,总结出板块构造演化在3个方面控制着原型盆地的叠加演化过程及含油气条件。研究认为:①全球85%以上的沉积盆地是由两类以上原型盆地叠加演化而成;②原型盆地的叠加演化过程以威尔逊旋回为周期且按着固定轨迹循环往复进行,在一个周期的每个阶段都能够形成特定的原型盆地;③每个原型盆地都能够形成独特的构造-沉积体系,从而决定其独有的生、储、盖等含油气条件,后期叠加的原型盆地不但能够改变早期原型盆地的油气成藏条件,而且可能形成新的含油气系统。将全球每个盆地最新一期板块构造运动所形成的原型盆地界定为现今的盆地类型,并划分出陆内生长裂谷、陆内夭折裂谷、陆间裂谷、被动大陆边缘、内克拉通、海沟、弧前、弧后裂谷、弧后坳陷、弧后小洋盆、周缘前陆、弧后前陆、走滑拉分和走滑挠曲共14类。该分类方案不仅能够确保每个沉积盆地类型的唯一性,便于推广应用,而且可以通过盆地类比,以科学预测现今各类沉积盆地的含油气远景。图6表1参64

本文引用格式

窦立荣 , 温志新 . 从原型盆地叠加演化过程讨论沉积盆地分类及含油气性[J]. 石油勘探与开发, 2021 , 48(6) : 1100 -1113 . DOI: 10.11698/PED.2021.06.03

Abstract

Based on the Wilson cycle principle of plate theory, by dissecting the evolution history of 483 sedimentary basins around the world since the Precambrian, combining the three stress environments of tension, compression and shear, classification of prototype basins superimposed evolution and sedimentary filling are analyzed. It is found that plate tectonic evolution controls the superimposed development process and petroleum-bearing conditions of the prototype basins in three aspects: first, more than 85% of the sedimentary basins in the world are developed from the superimposed development of two or more prototype basins; second, the superposition evolution process of the prototype basin takes Wilson cycle as the cycle and cycles in a fixed trajectory repeatedly, in each stage of a cycle, a specific type of prototype basin can be formed; third, each prototype basin can form a unique tectonic-sedimentary system, which determines its unique source, reservoir, cap conditions etc. for hydrocarbon accumulation, the later superimposed prototype basin can change the oil and gas accumulation conditions of the earlier prototype basin, and may form new petroleum systems. Based on this, by defining the type of a current basin as its prototype basin formed by the latest plate tectonic movement, 14 types of prototype basins can be classified in the world, namely, intracontinental growth rift, intracontinental aborted rift, intercontinental rift, passive continental margin, interior craton, trench, fore-arc rift, back-arc rift, back-arc depression, back-arc small ocean, peripheral foreland, back-arc foreland, strike-slip pull-apart, and strike-slip flexural basins. The classification scheme can ensure the type uniqueness of individual sedimentary basins, and make it possible to predict their oil and gas potential through analog scientifically.

参考文献

[1] 陆克政, 朱筱敏, 漆家福, 等. 沉积盆地分析[M]. 北京: 石油大学出版社, 2003.
LU Kezheng, ZHU Xiaomin, QI Jiafu, et al. Analysis of petroliferous basin[M]. Beijing: University of Petroleum Press, 2003.
[2] UMBGROVE J H. The pulse of the Earth[M]. Berlin: Springer Netherlands, 1971.
[3] WEEK S L. Factors of sedimentary basin development that control oil occurrence[M]. New York: AAPG, 1952: 2071-2124.
[4] HALBOUTY M T, MEYERHOFF A A, KING R E, et al. World's giant oil and gas fields, geo-logic factors affecting their formation, and basin classification[M]. Tulsa, Oklahoma, USA: AAPG Memoir, 1970: 502-528.
[5] DICKINSON W R. Plate tectonics and sedimentation[M]. Tulsa, Oklahoma, USA: Special Publication, 1974.
[6] DICKINSON W R. Plate tectonic evolution of sedimentary basins[R]. Tulsa, Oklahoma, USA: American Association of Petroleum Geologists Continuing Education Course Notes, 1976.
[7] KLEMME H D. Petroleum basins: Classifications and characteristics[J]. Journal of Petroleum Geology, 1988, 3(2): 1036-1058.
[8] BALLY A W. Basins and subsidence: A summary[M]. Tulsa, Oklahoma, USA: AAPG, 1980.
[9] 陈发景, 陈全茂, 孙家振, 等. 板块与油气盆地[M]. 北京: 中国地质大学, 1988.
CHEN Fajing, CHEN Quanmao, SUN Jiazhen, et al. Plate and petroliferious basin[M]. Beijing: China University of Geosciences, 1988.
[10] KINGSTON D R, DISHROON C P, WILLIAMS P A, et al. Global basin classification system[M]. Tulsa, Oklahoma, USA: AAPG, 1983: 2175-2193.
[11] 刘和甫. 盆地演化与地球动力学旋回[J]. 地学前缘, 1997, 4(3): 233-240.
LIU Hefu. Basin evolution and geodynamic cycles[J]. Earth Science Frontiers, 1997, 4(3): 233-240.
[12] 刘和甫. 沉积盆地地球动力学分类及构造样式分析[J]. 地学科学, 1993, 18(6): 699-814.
LIU Hefu. Geodynamic classification and tectonic style analysis of sedimentary basins[J]. Geological Science, 1993, 18(6): 699-814.
[13] ALLEN P A, ALLEN J R. Basin analysis principles and applications[M]. Oxford: Blackwell Publishing, 2005.
[14] WEEKS L G. Habitat of oil and some factors that control it[M]. Tulsa, Oklahoma, USA: AAPG, 1958.
[15] 童晓光, 何登发. 油气勘探原理和方法[M]. 北京: 石油工业出版社, 2001.
TONG Xiaoguang, HE Dengfa. Petroleum exploration principle and method[M]. Beijing: Petroleum Industry Press, 2001.
[16] 温志新, 童晓光, 张光亚, 等. 全球板块构造演化过程中五大成盆期原型盆地的形成、改造及叠加过程[J]. 地学前缘, 2014, 21(3): 26-37.
WEN Zhixin, TONG Xiaoguang, ZHANG Guangya, et al. The transformation and stacking process of protatype basin in five global plate tectonic evolution stages[J]. Earth Science Frontiers, 2014, 21(3): 26-37.
[17] ROBERT S, DIETZ A, JOHN C. Reconstruction of pangaea breakup and dispersion of continents, Permian to present[J]. Journal of Geophysical Research, 1970, 75(26): 4935-4955.
[18] WILSON J T. Did the Atlantic close and then reopen?[J]. Nature, 1966, 211(5050): 676-681.
[19] WILSON J T. Static or mobile earth: The current scientific revolution[M]. Toronto: American Philosophical Society, 1969.
[20] BURKE K. Plate tectonics, the Wilson Cycle, and mantle plume: Geodynamics from the top[J]. Annual Review of Earth & Planetary Sciences, 2011, 16(1): 1-29.
[21] 李春昱, 郭令智, 朱夏, 等. 板块构造基本问题[M]. 北京: 地震出版社, 1986: 249-252.
LI Chunyu, GUO Lingzhi, ZHU Xia, et al. Basic problem of plate tectonics[M]. Beijing: Seismic Press, 1986: 249-252.
[22] LANDON S M. Interior rift basins[M]. Tulsa, Oklahoma, USA: AAPG, 1991.
[23] IHS Energy. The east Africa rift system[R]. Huston, USA: IHS Inc., 2019.
[24] IHS Energy. Gulf of Suez Basin[R]. Huston, USA: IHS Inc., 2019.
[25] 冯福恺, 王庭斌, 张士亚, 等. 中国天然气地质[M]. 北京: 地质出版社, 1995.
FENG Fukai, WANG Tingbin, ZHANG Shiya, et al. China natural gas geology[M]. Beijing: Geology Press, 1995.
[26] 《中国沉积盆地烃源岩评价》编委会. 中国沉积盆地烃源岩评价[M]. 北京: 石油工业出版社, 1989: 2-35.
《Evaluation of source rocks in petroliferous basins in China》Editorial Committee. Evaluation of source rocks in petroliferous basins in China[M]. Beijing: Petroleum Industry Press, 1989: 2-35.
[27] IHS Energy. Sirte Basin[R]. Huston, USA: IHS Inc., 2019.
[28] IHS Energy. Western Siberia Basin[R]. Huston, USA: IHS Inc., 2019.
[29] IHS Energy. North Sea Basin[R]. Huston, USA: IHS Inc., 2019.
[30] 窦立荣. 陆内裂谷盆地的油气成藏风格[J]. 石油勘探与开发, 2004, 31(2): 29-31.
DOU Lirong. Hydrocarbon accumulation styles in intracontinental rift basins[J]. Petroleum Exploration and Development, 2004, 31(2): 29-31.
[31] IHS Energy. The Red Sea Basin[R]. Huston, USA: IHS Inc., 2019.
[32] EDWARDS J D, SANTOGROSSI P A. Divergent/passive margin basins[M]. Tulsa, Oklahoma, USA: AAPG, 1989.
[33] KATZ B J, MELLO M R. Petroleum systems of south Atlantic marginal basins: An overview[J]. Petroleum Systems of South Atlantic Margins, 2000, 73: 1-14.
[34] 温志新, 徐洪, 王兆明, 等. 被动大陆边缘盆地分类及其分布规律[J]. 石油勘探与开发, 2016, 43(5): 678-688.
WEN Zhixin, XU Hong, WANG Zhaoming, et al. Classification and hydrocarbon distribution of passive continental margin basins[J]. Petroleum Exploration and Development, 2016, 43(5): 678-688.
[35] 温志新, 王兆明, 宋成鹏, 等. 东非被动大陆边缘盆地结构构造差异与油气勘探[J]. 石油勘探与开发, 2015, 42(5): 671-680.
WEN Zhixin, WANG Zhaoming, SONG Chengpeng, et al. Structure architecture difference and petroleum exploration of passive continental margin basins in east Africa[J]. Petroleum Exploration and Development, 2015, 42(5): 671-680.
[36] 范时清. 海洋地质学[M]. 北京: 海洋出版社, 2004: 212-269.
FAN Shiqing. Marine geology[M]. Beijing: China Ocean Press, 2004: 212-269.
[37] LEIGHTON M W, KOLATA D R. Interior craton basins[M]. Tulsa, Oklahoma, USA: AAPG, 1991.
[38] IHS Energy. Williston Basin[R]. Huston, USA: IHS Inc., 2019.
[39] IHS Energy. Parana Basin[R]. Huston, USA: IHS Inc., 2019.
[40] IHS Energy. Paris Basin[R]. Huston, USA: IHS Inc., 2019.
[41] KARIG D E. Origin and development of marginal basins in the western Pacific[J]. Journal of Geophysical Research, 1971, 76: 671-675.
[42] IHS Energy. The Andaman Sea Basin[R]. Huston, USA: IHS Inc., 2019.
[43] IHS Energy. The south/middle/north Sumatra Basin[R]. Huston, USA: IHS Inc., 2019.
[44] YARBOROUGH H. Geology of continental margins[M]. Tulsa, Oklahoma, USA: AAPG, 1978.
[45] IHS Energy. The Burma offshore Basin[R]. Huston, USA: IHS Inc., 2019.
[46] IHS Energy. Talara Basin[R]. Huston, USA: IHS Inc., 2019.
[47] IHS Energy. Malay Basin[R]. Huston, USA: IHS Inc., 2019.
[48] 吴景福, 杨树春, 张功成, 等. 南海北部深水区盆地热历史及烃源岩热演化研究[J]. 地球物理学报, 2013, 56(1): 171-178.
WU Jingfu, YANG Shuchun, ZHANG Gongcheng, et al. Geothermal history and thermal evolution of source rocks in deep water area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2013, 56(1): 171-178.
[49] 张功成, 唐武, 谢晓军, 等. 南海南部大陆边缘两个盆地带油气地质特征[J]. 石油勘探与开发, 2017, 44(6): 849-858.
ZHANG Gongcheng, TANG Wu, XIE Xiaojun, et al. Petroleum geology of two basins in the southern continental margin of the South China Sea[J]. Petroleum Exploration and Development, 2017, 44(6): 849-858.
[50] IHS Energy. Japen Sea Basin[R]. Huston, USA: IHS Inc., 2019.
[51] IHS Energy. Central Burma Basin[R]. Huston, USA: IHS Inc., 2019.
[52] IHS Energy. The Zagros and Arabian Basin[R]. Huston, USA: IHS Inc., 2019.
[53] MACQUEEN R W, LECKIE D A. Foreland basins and fore belts[M]. Tulsa, Oklahoma, USA: AAPG, 1991.
[54] 陈竹新, 王丽宁, 杨光, 等. 川西南冲断带深层地质构造与潜在油气勘探领域[J]. 石油勘探与开发, 2020, 47(4): 653-667.
CHEN Zhuxin, WANG Lining, YANG Guang, et al. Geological structures and potential petroleum exploration areas in the southwestern Sichuan fold-thrust belt, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 653-667.
[55] 胡素云, 王小军, 曹正林, 等. 准噶尔盆地大中型气田(藏)形成条件与勘探方向[J]. 石油勘探与开发, 2020, 47(2): 247-259.
HU Suyun, WANG Xiaojun, CAO Zhenglin, et al. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2): 247-259.
[56] 赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089.
ZHAO Wenzhi, ZHU Rukai, HU Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089.
[57] 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855.
MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855.
[58] IHS Energy. Volga-Urals Basin[R]. Huston, USA: IHS Inc., 2019.
[59] IHS Energy. Timan- Pechala Basin[R]. Huston, USA: IHS Inc., 2019.
[60] BIDDLE K T. Active margin basins[M]. Tulsa, Oklahoma, USA: AAPG, 1991.
[61] IHS Energy. The Bongor Basin[R]. Huston, USA: IHS Inc., 2019.
[62] IHS Energy. The Ridge Basin[R]. Huston, USA: IHS Inc., 2019.
[63] 窦立荣, 肖坤叶, 胡勇, 等. 乍得Bongor盆地石油地质特征及成藏模式[J]. 石油学报, 2011, 32(3): 379-386.
DOU Lirong, XIAO Kunye, HU Yong, et al. Petroleum geological characteristics and reservoir forming model of Bongor Basin, the Republic of Chad[J]. Acta Petrolei Sinica, 2011, 32(3): 379-386.
[64] IHS Energy. The San Joaquin Basin[R]. Huston, USA: IHS Inc., 2019.
文章导航

/