综合研究

天然气顶部重力驱油储气一体化建库技术

  • 江同文 ,
  • 王正茂 ,
  • 王锦芳
展开
  • 1.中国石油勘探与生产分公司,北京 100007;
    2.中国石油勘探开发研究院,北京 100083
江同文(1968-),男,四川三台人,博士,教授级高级工程师,主要从事油气田开发、储气库管理等研究工作。地址:北京市东城区东直门北大街9号,中国石油勘探与生产分公司,邮政编码:100007。E-mail: jiangtw-tlm@petrochina.com.cn

收稿日期: 2021-01-21

  网络出版日期: 2021-09-17

基金资助

中国石油天然气股份有限公司前期研究项目“水介质类和天然气介质类重大开发试验跟踪评价前期研究(2021)”(2021-40217-000041); 长庆油田技术开发项目“长庆油田‘二三结合’提高采收率技术及潜力评价研究”(RIPED-JS-50016)

Integrated construction technology for natural gas gravity drive and underground gas storage

  • JIANG Tongwen ,
  • WANG Zhengmao ,
  • WANG Jinfang
Expand
  • 1. Exploration & Production Company, PetroChina, Beijing 100007, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Received date: 2021-01-21

  Online published: 2021-09-17

摘要

基于天然气驱油重力、混相、降黏和渗吸机理,提出了天然气驱油储气一体化建库技术,同时对该技术的技术内涵、储气库选址原则、运行参数优化流程及优点进行了系统阐述。一体化建库可充分利用天然气驱油的重力、混相、降黏和渗吸等机理,既能大幅度提高原油采收率,又可逐步协同建成战略储气库,实现采油与天然气调峰双赢。与气藏型储气库相比,一体化建库具有增加原油产量和天然气储转费两种盈利模式,效益更好;同时,一体化建库在建库初期保持高压注气,投产初期为小吞小吐,中后期过渡到大吞大吐,周期应力变化不强,克服了气藏型储气库始终保持大吞大吐运行、注采周期内存在高强度应力变化的缺点。一体化建库的关键技术为油藏选址及评价,重力驱油、驱油压力优化和储气库运行参数优化等。经前期先导试验证实,该技术已初步取得成功,是中国快速发展储气库建设的新思路。图16表3参25

本文引用格式

江同文 , 王正茂 , 王锦芳 . 天然气顶部重力驱油储气一体化建库技术[J]. 石油勘探与开发, 2021 , 48(5) : 1061 -1068 . DOI: 10.11698/PED.2021.05.18

Abstract

Based on the mechanisms of gravity displacement, miscibility, viscosity reduction, and imbibition in natural gas flooding, an integrated reservoir construction technology of oil displacement and underground gas storage (UGS) is proposed. This paper systemically describes the technical connotation, site selection principle and optimization process of operation parameters of the gas storage, and advantages of this technology. By making full use of the gravity displacement, miscibility, viscosity reduction, and imbibition features of natural gas flooding, the natural gas can be injected into oil reservoir to enhance oil recovery and build strategic gas storage at the same time, realizing the win-win situation of oil production and natural gas peak shaving. Compared with the gas reservoir storage, the integrated construction technology of gas storage has two profit models: increasing crude oil production and gas storage transfer fee, so it has better economic benefit. At the same time, in this kind of gas storage, gas is injected at high pressure in the initial stage of its construction, gas is injected and produced in small volume in the initial operation stage, and then in large volume in the middle and late operation stage. In this way, the gas storage wouldn’t have drastic changes in stress periodically, overcoming the shortcomings of large stress variations of gas reservoir storage during injection-production cycle due to large gas injection and production volume. The keys of this technology are site selection and evaluation of oil reservoir, and optimization of gravity displacement, displacement pressure, and gas storage operation parameters, etc. The pilot test shows that the technology has achieved initial success, which is a new idea for the rapid development of UGS construction in China.

参考文献

[1] 马新华, 丁国生. 中国天然气地下储气库[M]. 北京: 石油工业出版社, 2018.
MA Xinhua, DING Gousheng.China’s underground natural gas storage[M]. Beijing: Petroleum Industry Press, 2018.
[2] 邹才能, 赵群, 陈建军. 中国天然气发展态势及战略预判[J]. 天然气工业, 2018, 38(4): 1-11.
ZOU Caineng, ZHAO Qun, CHEN Jianjun. Natural gas in China: Development trend and strategic forecast[J]. Natural Gas Industry, 2018, 38(4): 1-11.
[3] 丁国生, 魏欢. 中国地下储气库建设20年回顾与展望[J]. 油气储运, 2020, 39(1): 25-29.
DING Guosheng, WEI Huan. Achievements and prospects of UGS construction in China in the past 20 years[J]. Oil & gas Storage Transportation, 2020, 39(1): 25-29.
[4] GIOUSE C H. 2015—2018 Triennium work report of working committee 2: Underground gas storage[R]. Washington: 27th World Natural Gas Congress, 2018.
[5] 丁国生, 李春, 王皆明, 等. 中国地下储气库现状及技术发展方向[J]. 天然气工业, 2015, 35(11): 107-112.
DING Guosheng, LI Chun, WANG Jieming, et al. The status quo and technical development direction of underground gas storages in China[J]. Natural Gas Industry, 2015, 35(11): 107-112.
[6] 王皆明, 朱亚东, 王莉, 等. 北京地区地下储气库方案研究[J]. 石油学报, 2000, 21(3): 100-104.
WANG Jieming, ZHU Yadong, WANG Li, et al. Study on the scheme of underground gas storage in Beijing[J]. Acta Petrolei Sinica, 2000, 21(3): 100-104.
[7] 袁士义, 王强, 李军诗, 等. 注气提高采收率技术进展及前景展望[J]. 石油学报, 2020, 41(12): 1623-1631.
YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhance oil recovery by gas injection[J]. Acta Petrolei Sinica, 2020, 41(12): 1623-1631.
[8] 袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668.
YUAN Shiyi, WANG Qiang. New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4): 657-668.
[9] 何江川, 廖广志, 王正茂. 油田开发战略与接替技术[J]. 石油学报, 2012, 33(3): 519-525.
HE Jiangchuan, LIAO Guangzhi, WANG Zhengmao. Oilfield development strategy and replacement techniques[J]. Acta Petrolei Sinica, 2012, 33(3): 519-525.
[10] 张俊, 周自武, 王伟胜, 等. 葡北油田气水交替驱提高采收率矿场试验研究[J]. 石油勘探与开发, 2004, 31(6): 85-87.
ZHANG Jun, ZHOU Ziwu, WANG Weisheng, et al. EOR field test of gas-water alternative injection in Pubei oilfield[J]. Petroleum Exploration and Development, 2004, 31(6): 85-87.
[11] 汤勇, 龙科吉, 王皆明, 等. 凝析气藏型储气库多周期注采过程中流体相态变化特征[J]. 石油勘探与开发, 2021, 48(2): 337-346.
TANG Yong, LONG Keji, WANG Jieming, et al. Change of phase state during multi-cycle injection and production process of condensate gas reservoir based underground gas storage[J]. Petroleum Exploration and Development, 2021, 48(2): 337-346.
[12] 朱思南, 孙军昌, 魏国齐, 等. 水侵气藏型储气库注采相渗滞后数值模拟修正方法[J]. 石油勘探与开发, 2021, 48(1): 166-174.
ZHU Sinan, SUN Junchang, WEI Guoqi, et al. Numerical simulation-based correction of relative permeability hysteresis in water-invaded underground gas storage during multi-cycle injection and production[J]. Petroleum Exploration and Development, 2021, 48(1): 166-174.
[13] 李光. 锦2-6-9大凌河油层天然气驱可行性研究[J]. 中国石油和化工标准与质量, 2011, 31(12): 140, 216.
LI Guang. Feasibility study of natural gas flooding in Jin2-6-9 Dalinghe reservoir[J]. China Petroleum and Chemical Standard and Quality, 2011, 31(12): 140, 216.
[14] 郑得文, 赵堂玉, 张刚雄, 等. 欧美地下储气库运营管理模式的启示[J]. 天然气工业, 2015, 35(11): 97-101.
ZHENG Dewen, ZHAO Tangyu, ZHANG Gangxiong, et al. Enlightenment from European and American UGS operation management modes[J]. Natural Gas Industry, 2015, 35(11): 97-101.
[15] 郭永伟, 杨胜来, 李良川, 等. 长岩心注天然气驱油物理模拟实验[J]. 断块油气田, 2009, 16(6): 76-78.
GUO Yongwei, YANG Shenglai, LI Liangchuan, et al. Experiment on physical modeling of displacement oil with natural gas for long core[J]. Fault-Block Oil & Gas Field, 2009, 16(6): 76-78.
[16] 高弘毅, 侯天江, 吴应川. 注天然气驱提高采收率技术研究[J]. 钻采工艺, 2009, 32(5): 25-27.
GAO Hongyi, HOU Tianjiang, WU Yingchuan. Study on enhanced oil recovery by natural gas injection[J]. Drilling & Production Technology, 2009, 32(5): 25-27.
[17] 马新华, 郑得文, 申瑞臣, 等. 中国复杂地质条件气藏型储气库建库关键技术与实践[J]. 石油勘探与开发, 2018, 45(3): 489-498.
MA Xinhua, ZHENG Dewen, SHEN Ruichen, et al. Key technologies and practice for gas field storage facility construction of complex geological conditions in China[J]. Petroleum Exploration and Development, 2018, 45(3): 489-498.
[18] 赵燕芹, 李巧梅, 陈德斌, 等. 低渗油藏天然气驱适应性研究[J]. 断块油气田, 2009, 16(2): 77-79.
ZHAO Yanqin, LI Qiaomei, CHEN Debin, et al. Research on the adaptability of natural gas drive for low-permeability reservoir[J]. Fault-Block Oil & Gas Field, 2009, 16(2): 77-79.
[19] 魏浩光, 岳湘安, 赵永攀, 等. 特低渗透油藏天然气非混相驱实验[J]. 石油学报, 2011, 32(2): 307-310.
WEI Haoguang, YUE Xiang’an, ZHAO Yongpan, et al. An experiment investigation of the natural gas immiscible displacement in ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(2): 307-310.
[20] LEE S T, LO H, DHARMAWARDHANA B T. Analysis of mass transfer mechanisms occurring in rich gas displacement process[R]. SPE 18061-MS, 1988.
[21] THOMAS F B, ZHOU X L, BENNION D B, et al. A comparative study of RBA, P-x, multicontact and slim tube results[J]. Journal of Canadian Petroleum Technology, 1994, 33(2): 17-26.
[22] STONE H. Vertical conformance in an alternation water-miscible gas flood[R]. SPE 11130, 1982.
[23] SHIMIZU T. Application of hydrocarbon gas miscible flooding for water flooding reservoir[R]. SPE 57297, 1999.
[24] MUNGAN N. Canada-world leader in hydrocarbon miscible flooding[J]. Journal of Canadian Petroleum Technology, 2002, 41(8): 35-37.
[25] 廖广志, 王连刚, 王正茂. 重大开发试验实践及启示[J]. 石油科技论坛, 2019, 38(2): 1-10.
LIAO Guangzhi, WANG Liangang, WANG Zhengmao. Practice and reflection of important development experiments[J]. Oil Forum, 2019, 38(2): 1-10.
文章导航

/