基于弹性杆力学模型建立了悬杆线井眼轨道设计方法,对比了悬杆线轨道在降摩减扭等方面的优势,分析了悬杆线轨道降摩减扭效果的主控因素及其影响规律。研究表明,相对于常规轨道,悬杆线轨道在一定的参数区间内能够有效降低摩阻、扭矩,相对于悬链线轨道,悬杆线轨道具有更多的可控参数。影响悬杆线轨道降摩减扭效果的主要因素有摩擦系数、造斜点至靶点的水平距离和垂直距离、悬杆段起始点井斜角,摩擦系数、悬杆段起始点井斜角越大,降摩减扭效果越差;当造斜点至靶点的水平距离和垂直距离均超过3 000 m且两者比值接近1.5时,悬杆线轨道的降摩减阻效果最为理想,滑动钻进摩阻最大可降低60%,旋转钻进扭矩最大可降低40%,在深层大位移井中有独特的应用前景。图8表6参28
Based on the mechanical model of an elastic rod, a new trajectory design method was established. The advantages of the suspender line trajectory in reducing drag and torsion were compared, and the main controlling factors of drag and torque and their influence rules were analyzed. Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory. The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient, vertical distance, horizontal distance, and deviation angle at the initial point in the suspended section. The larger the friction coefficient and deviation angle, the less the drag reduction and torque reduction. The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5. The drag in sliding drilling can be reduced up to 60%, and the torque in rotary drilling can be reduced by a maximum of 40%. Therefore, the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.
[1] EDISON J E. Engineering planning and supervision of directional drilling operations[J]. Journal of Petroleum Technology, 1957, 9(11): 16-19.
[2] WALSTROM J E, HARVEY R P, EDDY H D. A comparison of various directional survey models and an approach to model error analysis[J]. Journal of Petroleum Technology, 1972, 24(8): 935-943.
[3] WILSON G J. An improved method for computing directional surveys[J]. Journal of Petroleum Technology, 1968, 20(8): 871-876.
[4] CRAIG J T, RANDALL B V. Directional survey calculation[J]. Petroleum Engineer International, 1976, 48(4): 38-54.
[5] TAYLOR H L, MASON M C. A systematic approach to well surveying calculations[J]. SPE Journal, 1972, 12(6): 474-488.
[6] ZAREMBA W A. Directional survey by the circular arc method[J]. SPE Journal, 1973, 13(1): 5-11.
[7] BLYTHE E.J. Computing accurate directional surveys[J]. World Oil, 1975, 181(2): 25-28.
[8] 刘修善. 井眼轨迹不确定性表征方法[J]. 石油勘探与开发, 2019, 46(2): 391-396.
LIU Xiushan. Borehole trajectory uncertainty and its characterization[J]. Petroleum Exploration and Development, 2019, 46(2): 391-396.
[9] 洪迪峰, 唐雪平, 高文凯, 等. 基于邻井相对位置的井眼分离系数计算方法[J]. 石油勘探与开发, 2020, 47(1): 186-192.
HONG Difeng, TANG Xueping, GAO Wenkai, et al. A new calculation approach of wellbore separation factor based on the relative position of adjacent wells[J]. Petroleum Exploration and Development, 2020, 47(1): 186-192.
[10] 刘修善, 王超. 空间圆弧轨迹的解析描述技术[J]. 石油学报, 2014, 35(1): 134-140.
LIU Xiushan, WANG Chao. Analytic description of spatial-arc wellbore trajectory[J]. Acta Petrolei Sinica, 2014, 35(1): 134-140.
[11] 韩志勇. 定向钻井设计与计算[M]. 2版. 东营: 中国石油大学出版社, 2007.
HAN Zhiyong.Design and calculation of directional drilling[M]. 2nd ed. Dongying: China University of Petroleum Press, 2007.
[12] 易先中, 宋顺平, 陈霖, 等. 复杂结构井中钻柱托压效应的研究进展[J]. 石油机械, 2013, 41(5): 100-104, 110.
YI Xianzhong, SONG Shunping, CHEN Lin, et al. Progress of research on drillstring backing pressure effect in complex structure well[J]. China Petroleum Machinery, 2013, 41(5): 100-104, 110.
[13] MIRHAJ S A, KAARSTAD E, AADNOY B S. Improvement of torque-and-drag modeling in long-reach wells[J]. Modern Applied Science, 2011, 5(5): 10-28.
[14] 刘修善, 郭钧. 空间圆弧轨道的描述与计算[J]. 天然气工业, 2000, 20(5): 44-47.
LIU Xiushan, GUO Jun. Description and calculation of the well path with spatial arc model[J]. Natural Gas Industry, 2000, 20(5): 44-47.
[15] 韩志勇. 斜面圆弧形井眼的轨迹控制新模式[J]. 石油钻探技术, 2004, 32(2): 1-3.
HAN Zhiyong. New control mode for well trajectory on circular arc with inclined planes[J]. Petroleum Drilling Techniques, 2004, 32(2): 1-3.
[16] 刘修善, 苏义脑. 空间圆弧轨迹的井斜演化规律及控制模式[J]. 石油勘探与开发, 2014, 41(3): 354-358.
LIU Xiushan, SU Yinao. Evolution pattern and control mode of well deviation for circular-arc trajectories in space[J]. Petroleum Exploration and Development, 2014, 41(3): 354-358.
[17] 郑基英. 定向井井眼位置的计算方法[J]. 江汉石油学院学报, 1981, 3(1): 71-87.
ZHENG Jiying. Calculation method of borehole location in directional wells[J]. Journal of Jianghan Petroleum Institute, 1981, 3(1): 71-87.
[18] 许玲, 鲁港, 赵辉. 圆柱螺线法测斜计算中的数值方法[J]. 探矿工程(岩土钻掘工程), 2008, 35(5): 1-4.
XU Ling, LU Gang, ZHAO Hui. Numerical method for deviational survey by cylinder helix method[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2008, 35(5): 1-4.
[19] LIU Xiushan, SHI Zaihong, FAN Sen. Natural parameter method accurately calculates well bore trajectory[J]. Oil & Gas Journal, 1997, 95(4): 90-92.
[20] 鲁港, 鲍继红. 自然曲线法测斜计算中的数值方法[J]. 石油地质与工程, 2008, 22(1): 72-74.
LU Gang, BAO Jihong. Numerical approaches of natural curve method in inclination survey[J]. Petroleum Geology and Engineering, 2008, 22(1): 72-74.
[21] 韩志勇. 定向井悬链线轨道的无因次设计方法[J]. 石油钻采工艺, 1997, 19(4): 13-16.
HAN Zhiyong. Method of non-dimensional design of cautionary shape profile of directional well[J]. Oil Drilling & Production Technology, 1997, 19(4): 13-16.
[22] 刘修善. 悬链线轨道设计方法研究[J]. 天然气工业, 2007, 27(7): 73-75.
LIU Xiushan. Study on the methods of planning a catenary profile of wellbore trajectory[J]. Natural Gas Industry, 2007, 27(7): 73-75.
[23] 刘修善. 三维悬链线轨道的设计方法[J]. 石油钻采工艺, 2010, 32(6): 7-10.
LIU Xiushan. Three-dimensional catenary profile design method[J]. Oil Drilling & Production Technology, 2010, 32(6): 7-10.
[24] 薛纭. 超细长弹性杆非线性力学的建模与分析[D]. 上海: 上海大学, 2004.
XUE Yun. Modeling and analysis of nonlinear mechanics of a super-thin elastic rod[D]. Shanghai: Shanghai University, 2004.
[25] 刘延柱. 弹性细杆的非线性力学[M]. 北京: 清华大学出版社, 2006.
LIU Yanzhu.Nonlinear mechanics of thin elastic rod[M]. Beijing: Tsinghua University Press, 2006.
[26] 刘修善. 井眼轨道几何学[M]. 北京: 石油工业出版社, 2006.
LIU Xiushan.The geometry of wellbore trajectory[M]. Beijing: Petroleum Industry Press, 2006.
[27] YU Fan, HUANG Genlu, NI Hongjian, et al. Analysis of the main factors affecting bottom hole assembly re-entry into main hole in forward drilling of fishbone wells[J]. Journal of Petroleum Science and Engineering, 2020, 189: 107018.
[28] 李伟, 刘文臣, 周贤海, 等. 涪陵页岩气田三维水平井轨道优化设计方法探讨[J]. 石油钻探技术, 2018, 46(2): 17-23.
LI Wei, LIU Wenchen, ZHOU Xianhai, et al. 3D horizontal wellbore trajectory optimization design method in the Fuling shale gas field[J]. Journal of Petroleum Science and Engineering, 2018, 46(2): 17-23.