油气勘探

塔河地区奥陶系不同地貌岩溶带结构组合差异与油气富集

  • 张三 ,
  • 金强 ,
  • 胡明毅 ,
  • 韩起超 ,
  • 孙建芳 ,
  • 程付启 ,
  • 张旭栋
展开
  • 1.长江大学地球科学学院,武汉 430100;
    2.中国石油大学(华东)地球科学与技术学院,山东青岛 266580;
    3.中国石化股份胜利油田分公司孤岛采油厂,山东东营 257231;
    4.中国石油化工股份有限公司石油勘探开发研究院,北京 100083
张三(1990-),男,陕西安康人,长江大学地球科学学院在站博士后,主要从事石油地质方面研究。地址:湖北省武汉市蔡甸区蔡甸街大学路111号,长江大学地球科学学院C座334,邮政编码:430100。E-mail:zspetro@sina.com

收稿日期: 2021-01-26

  网络出版日期: 2021-09-17

基金资助

国家油气重大专项(2016ZX05014-002-007); 国家自然科学基金(U1663204,42072171,41772103)

Differential structure of Ordovician karst zone and hydrocarbon enrichment in paleogeomorphic units in Tahe area, Tarim Basin, NW China

  • ZHANG San ,
  • JIN Qiang ,
  • HU Mingyi ,
  • HAN Qichao ,
  • SUN Jianfang ,
  • CHENG Fuqi ,
  • ZHANG Xudong
Expand
  • 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. School of Geosciences, China University of Petroleum, Qingdao 266580, China;
    3. Gudao Oil Production Plant, Shengli Oilfield Company of Sinopec, Dongying 257231, China;
    4. Exploration and Development Institute, Sinopec, Beijing 100083, China

Received date: 2021-01-26

  Online published: 2021-09-17

摘要

基于大量地质、钻/测井、地震及生产动态资料,从水系分布及水流通道分析入手,探讨塔河油田奥陶系不同地貌单元岩溶带结构组合特征,并分析其油气富集特征。结果显示,塔河地区奥陶系岩溶古地貌由分水岭、岩溶谷地及岩溶盆地组成。分水岭中发育表层岩溶带(平均厚度为57.8 m)与渗流岩溶带(厚度为115.2 m),其中断层、裂缝和中小型缝洞体密集发育,76.5%的油井单井累产油量超过5×104 t。岩溶谷地发育表层岩溶带、渗流岩溶带和径流岩溶带,平均厚度分别为14.6,26.4,132.6 m,其中径流岩溶带中地下河溶洞多被细粒物质充填(充填率达86.8%),84.9%的油井单井累产油量不到2×104 t。岩溶盆地不发育岩溶带,仅在局部断裂带上发育断溶体,其厚度可达600 m,且紧密围绕断裂周围1 km内分布。因此,不同地貌单元水流产状不同,形成不同的岩溶带结构组合,同时造成油气分布差异。分水岭为油气运移指向区,其中相互串通的中小型缝洞空间油气充满度高,高产井比例大。地下河沉积搬运能力强,溶洞充填率高,油气丰度小,低产、低效井比例大。通源断裂既是水流通道、又是油气运移通道,岩溶缝洞储集空间巨大,油气易于富集。图10表1参30

本文引用格式

张三 , 金强 , 胡明毅 , 韩起超 , 孙建芳 , 程付启 , 张旭栋 . 塔河地区奥陶系不同地貌岩溶带结构组合差异与油气富集[J]. 石油勘探与开发, 2021 , 48(5) : 962 -973 . DOI: 10.11698/PED.2021.05.08

Abstract

Based on a large number of drilling, logging, seismic and production data, the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area, Tarim Basin, are discussed by analyzing the karst drainages and flowing channels. The karst paleogeomorphy of Ordovician in Tahe area is composed of watershed, karst valley and karst basin. The watershed has epikarst zone of 57.8 m thick on average and vadose karst zone of 115.2 m thick on average with dense faults, fractures and medium-small fracture-caves, and 76.5% of wells in this area have cumulative production of more than 5×104 t per well. The karst valleys have epikarst zone, vadose karst zone and runoff karst zone, with an average thickness of 14.6, 26.4 and 132.6 m respectively. In the runoff karst zone, the caves of subsurface river are mostly filled by fine sediment, with a filling rate up to 86.8%, and 84.9% of wells in this area have cumulative production of less than 2×104 t per well. The karst basin has no karst zone, but only fault-karst reservoirs in local fault zones, which are up to 600 m thick and closely developed within 1 km around faults. Different karst landforms have different water flowing pattern, forming different karst zone structures and resulting in differential distribution of oil and gas. The watershed has been on the direction of oil and gas migration, so medium-small sized connected fracture-caves in this area have high filling degree of oil and gas, and most wells in this area have high production. Most caves in subsurface river are filled due to strong sedimentation and transportation of the river, so the subsurface river sediment has low hydrocarbon abundance and more low production oil wells. The faults linking source rock are not only the water channels but also the oil-gas migration pathways, where the karst fractures and caves provide huge reservoir space for oil and gas accumulation.

参考文献

[1] FORD D C, WILLIAMS P W. Karst hydrogeology and geomorphology[M]. New York: John Wiley & Sons Ltd, 2007: 1-5.
[2] 中国科学院地质研究所岩溶研究组. 中国岩溶研究[M]. 北京: 科学出版社, 1979: 23-51.
Institute of Geology, Chinese Academy of Sciences. Study of karst in China[M]. Beijing: Science Press, 1979: 23-51.
[3] CVIJIĆ J. The evolution of Lapiés: A study in karst physiography[J]. Geographical Review, 1924, 14(1): 26-49.
[4] SWINNERTON A C. Origin of limestone caverns[J]. Geological Society of America Bulletin, 1932, 43(3): 663-694.
[5] ESTEBAN M, CLAPPA C F. Subaerial exposure environment[C]// SCHOLLE P A, BEBOUT D G. Carbonate depositional environments. Houston: AAPG, 1983.
[6] 朱起煌. 碳酸盐岩古岩溶相的发育模式、演化特点及储层类型[J]. 新疆石油地质, 1993, 14(2): 188-196.
ZHU Qihuang. The development model evolution characters and reservoir types of palaeo-karst facies of carbonate rock[J]. Xinjiang Petroleum Geology, 1993, 14(2): 188-196.
[7] LOUCKS R G. Paleocave carbonate reservoirs: Origins, burial- depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999, 83(11): 1795-1834.
[8] 贾振远, 蔡忠贤, 肖玉茹. 古风化壳是碳酸盐岩一个重要的储集层(体)类型[J]. 地球科学, 1995, 20(3): 283-289.
JIA Zhenyuan, CAI Zhongxian, XIAO Yuru. Paleoweathering crust: An important reservoir(body) type of carbonate rocks[J]. Earth Science—Journal of China University of Geosciences, 1995, 20(3): 283-289.
[9] 王俊明, 肖建玲, 周宗良, 等. 碳酸盐岩潜山储层垂向分带及油气藏流体分布规律[J]. 新疆地质, 2003, 20(2): 210-213.
WANG Junming, XIAO Jianling, ZHOU Zongliang, et al. Vertical zoning and fluid distribution for carbonate rock reservoir of buried hill[J]. Xinjiang Geology, 2003, 20(2): 210-213.
[10] 郑荣才, 彭军, 高红灿. 渝东黄龙组碳酸盐岩储层的古岩溶特征和岩溶旋回[J]. 地质地球化学, 2003, 31(1): 28-35.
ZHENG Rongcai, PENG Jun, GAO Hongcan. Palaeokarst-related characteristics and cycles of carbonate reservoirs in Huanglong Formation, Upper Carboniferous, Eastern Chongqing[J]. Geology-Geochemistry, 2003, 31(1): 28-35.
[11] 夏日元, 邹胜章, 杨彬, 等. 塔里木盆地奥陶系碳酸盐岩缝洞系统模式及成因研究[M]. 北京: 地质出版社, 2011: 31-39.
XIA Riyuan, ZOU Shengzhang, YANG Bin, et al.Study on the karst fracture-caves system model and origin of Ordovician carbonates in Tarim Basin[M]. Beijing: Geological Press, 2011: 31-39.
[12] 金强, 田飞. 塔河油田岩溶型碳酸盐岩缝洞结构研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 15-21.
JIN Qiang, TIAN Fei. A study on constructions of fracture-cave in karst carbonates in Tahe Oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 15-21.
[13] 李阳, 金强, 钟建华, 等. 塔河油田奥陶系岩溶分带及缝洞结构特征[J]. 石油学报, 2016, 37(3): 289-298.
LI Yang, JIN Qiang, ZHONG Jianhua, et al. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(3): 289-298.
[14] 邹胜章, 夏日元, 刘莉, 等. 塔河油田奥陶系岩溶储层垂向带发育特征及其识别标准[J]. 地质学报, 2016, 90(9): 2490-2501.
ZOU Shengzhang, XIA Riyuan, LIU Li, et al. Vertical zone characteristics and identification standard of Ordovian karst reservoirs in the Tahe Oilfield[J]. Acta Geologica Sinica, 2016, 90(9): 2490-2501.
[15] 李源, 鲁新便, 王莹莹, 等. 塔河油田海西早期岩溶水文地貌特征及其演化[J]. 石油与天然气地质, 2016, 37(5): 674-683.
LI Yuan, LU Xinbian, WANG Yingying, et al. Hydrogeomorphologic characterization and evolution of the Early Hercynian karstification in Tahe Oilfield, the Tarim Basin[J]. Oil & Gas Geology, 2016, 37(5): 674-683.
[16] 张三, 金强, 孙建芳, 等. 塔河地区奥陶系岩溶斜坡峰丘高地的形成及油气地质意义[J]. 石油勘探与开发, 2021, 48(2): 303-313.
ZHANG San, JIN Qiang, SUN Jianfang, et al. Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2): 303-313.
[17] 蔡忠贤, 张恒, 漆立新, 等. 塔里木盆地中—下奥陶统岩溶水文地貌结构类型及特征[J]. 石油学报, 2020, 41(1): 43-58.
CAI Zhongxian, ZHANG Heng, QI Lixin, et al. Types and characteristics of karst hydrogeomorphologic architecture in the Middle-Lower Ordovician, Tarim Basin[J]. Acta Petrolei Sinica, 2020, 41(1): 43-58.
[18] 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部“层控”与“断控”型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469.
LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of ‘strata-bound’ and ‘fault-controlled’ reservoirs in the northern Tarim Basin: Taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469.
[19] 康玉柱. 中国海相油气田勘探实例之四: 塔里木盆地塔河油田的发现与勘探[J]. 海相油气地质, 2005, 10(4): 31-39.
KANG Yuzhu. Cases of discovery exploration of marine fields in China (Part 4): Tahe Oilfield in Tarim Basin[J]. Marine Origin Petroleum Geology, 2005, 10(4): 31-39.
[20] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发, 2019, 46(3): 552-558.
JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552-558.
[21] 新疆油气区石油地质志编写组. 中国石油地质志: 第十五卷[M]. 北京: 石油工业出版社, 1992: 57-120.
Petroleum Geological Annals Compile Group of Xinjiang Oil Field. Petroleum geological annals: Vol.15[M]. Beijing: Petroleum Industry Press, 1992: 57-120.
[22] 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221.
HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221.
[23] 淡永, 梁彬, 曹建文, 等. 塔北哈拉哈塘地区奥陶系碳酸盐岩岩溶层组特征与溶蚀强度分析[J]. 石油实验地质, 2015, 37(5): 582-590.
DAN Yong, LIANG Bin, CAO Jianwen, et al. Characteristics and solution intensity of karst formations in Ordovician carbonates in the Halahatang area of the northern Tarim Basin[J]. Petroleum Geology and Experiment, 2015, 37(5): 582-590.
[24] 邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(1): 1-11.
WU Guanghui, MA Bingshan, HAN Jianfa, et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 1-11.
[25] 江同文, 韩剑发, 邬光辉, 等. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J]. 石油勘探与开发, 2020, 47(2): 213-224.
JIANG Tongwen, HAN Jianfa, WU Guanghui, et al. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong Uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2): 213-224.
[26] 张三, 金强, 赵深圳, 等. 塔河油田海西运动早期奥陶系岩溶地貌[J]. 新疆石油地质, 2020, 41(5): 527-534.
ZHANG San, JIN Qiang, ZHAO Shenzhen, et al. Ordovician karst Paleogeomorphology during Early Hercynian movement in Tahe Oilfield[J]. Xinjiang Petroleum Geology, 2020, 41(5): 527-534.
[27] 朱美衡, 郭建华, 石媛媛, 等. 塔河地区石炭系层序地层及与邻区的对比[J]. 石油勘探与开发, 2005, 32(3): 23-26.
ZHU Meiheng, GUO Jianhua, SHI Yuanyuan, et al. Carboniferous sequence stratigraphy correlation of Tahe and adjacent areas, Tarim Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 23-26.
[28] 张三, 金强, 乔贞, 等. 塔河油田奥陶系构造差异演化及油气地质意义[J]. 中国矿业大学学报, 2020, 49(3): 576-586.
ZHANG San, JIN Qiang, QIAO Zhen, et al. Differential tectonic evolution of the Ordovician and its significance in petroleum geology in main area of Tahe Oilfield[J]. Journal of China University of Mining & Technology, 2020, 49(3): 576-586.
[29] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.
DING Zhiwen, WANG Rujun, CHEN Fangfang, et al. Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang Oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296.
[30] 鲁新便, 何成江, 邓光校, 等. 塔河油田奥陶系油藏喀斯特古河道发育特征描述[J]. 石油实验地质, 2014, 36(3): 268-274.
LU Xinbian, HE Chengjiang, DENG Guangxiao, et al. Development features of karst ancient river system in Ordovician reservoirs, Tahe Oil Field[J]. Petroleum Geology and Experiment, 2014, 36(3): 268-274.
文章导航

/