油气勘探

渤海湾盆地枣园油田古近系孔店组沸石矿物的岩浆热液成因

  • 韩国猛 ,
  • 王丽 ,
  • 肖敦清 ,
  • 楼达 ,
  • 徐牧月 ,
  • 赵勇刚 ,
  • 裴眼路 ,
  • 郭小文 ,
  • 滕建成 ,
  • 韩元佳
展开
  • 1.中国石油大港油田公司勘探开发研究院,天津 300280;
    2.中国地质大学(武汉)构造与油气资源教育部重点实验室,武汉 430074;
    3.中国地质大学(武汉)地球科学学院,武汉 430074
韩国猛(1973-),男,河北衡水人,中国石油大港油田公司教授级高级工程师,主要从事石油天然气地质综合研究工作。地址:天津市滨海新区海滨街幸福路1278号,中国石油大港油田公司勘探开发研究院,邮政编码:300280。E-mail: hanmguo@petrochina.com.cn

收稿日期: 2020-12-02

  网络出版日期: 2021-09-17

基金资助

中国石油大港油田公司“大港探区火成岩分布及储层预测研究”项目(DGTY-2018-JS-408); 国家自然科学基金“盆地深部地质作用过程与资源效应”项目(U20B6001)

Magmatic hydrothermal fluid genesis of zeolite in the Paleogene Kongdian Formation of Zaoyuan oilfield, Bohai Bay Basin, China

  • HAN Guomeng ,
  • WANG Li ,
  • XIAO Dunqing ,
  • LOU Da ,
  • XU Muyue ,
  • ZHAO Yonggang ,
  • PEI Yanlu ,
  • GUO Xiaowen ,
  • TENG Jiancheng ,
  • HAN Yuanjia
Expand
  • 1. PetroChina Dagang Oilfield Company, Tianjin 300280, China;
    2. Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China;
    3. School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China

Received date: 2020-12-02

  Online published: 2021-09-17

摘要

通过普通薄片、电子探针、包裹体测温、激光拉曼光谱、激光剥蚀电感耦合等离子体质谱等技术分析手段,对渤海湾盆地枣园油田Z56井古近系孔店组二段(简称孔二段)热液流体活动进行识别,并探讨岩浆热液流体与孔二段沸石矿物的成因联系。实验发现:①泥岩裂缝内可见焦沥青与绿泥石、重晶石、黄铜矿、黄铁矿、钠沸石、方沸石等热液特征矿物共生;②焦沥青激光拉曼光谱的分峰拟合计算温度为324~354 ℃,绿泥石地质温度计指示温度为124~166 ℃,钠沸石原生包裹体均一温度为89~196 ℃,反映了岩浆热液流体的温度变化较大,但是都高于正常地温;③绿泥石和重晶石的铕正异常明显,钠沸石的稀土元素配分曲线与孔店组玄武岩相似,指示其来源于岩浆热液流体。同时,钻井资料显示,Z56井孔二段发育多套玄武岩夹层,具备岩浆热液活动的地质基础。因此,岩浆热液流体与孔二段泥岩之间的水-岩相互作用可能是导致研究区孔二段泥岩富含沸石矿物的原因之一。图9表3参48

本文引用格式

韩国猛 , 王丽 , 肖敦清 , 楼达 , 徐牧月 , 赵勇刚 , 裴眼路 , 郭小文 , 滕建成 , 韩元佳 . 渤海湾盆地枣园油田古近系孔店组沸石矿物的岩浆热液成因[J]. 石油勘探与开发, 2021 , 48(5) : 950 -961 . DOI: 10.11698/PED.2021.05.07

Abstract

Electronic probe, fluid inclusion homogenization temperature, Raman spectroscopy and laser ablation inductively coupled plasma mass spectrometry were utilized to identify the hydrothermal fluid-rock interactions in the second member of the Paleogene Kongdian Formation of Zaoyuan oilfield in Bohai Bay Basin (Kong 2 Member for short) of Well Z56 to find out the relationship between zeolite and hydrothermal fluid. The experimental results show that: (1) Pyrobitumen coexists with hydrothermal fluid characteristic minerals such as chlorite, barite, chalcopyrite, pyrite, natrolite and analcime in mudstone fractures. (2) The temperatures calculated from laser Raman spectrum of pyrobitumen, from the chlorite geothermometer and from measured homogenization temperature of natrolite inclusions are 324-354 ℃, 124-166 ℃ and 89-196 ℃, respectively; although vary widely, all the temperatures are obviously higher than the normal geothermal temperature. (3) The positive Eu anomaly of chlorite and barite, and the similar distribution pattern in rare earth elements between natrolite and basalt indicate they are from magmatic hydrothermal fluid. Moreover, drilling data shows that the Kong 2 Member in Well Z56 has several sets of basalt interlayers, suggesting there was geologic base of magmatic hydrothermal fluid activity. The magmatic hydrothermal fluid-rock interaction may be one of the reasons for the abnormal enrichment of zeolite in Kong 2 Member of the Cangdong Sag.

参考文献

[1] 侯中帅, 周立宏, 金凤鸣, 等. 歧口凹陷热液流体活动及其对储集层的改造[J]. 地球科学, 2021, 46(1): 1-16.
HOU Zhongshuai, ZHOU Lihong, JIN Fengming, et al. Hydrothermal fluid activity and its reformation on reservoirs in Qikou Depression[J]. Earth Science, 2021, 46(1): 1-16.
[2] 王清斌, 刘立, 牛成民, 等. 渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响[J]. 地球科学, 2019, 44(8): 2751-2760.
WANG Qingbin, LIU Li, NIU Chengmin, et al. The geological evidences and impacts of deep thermal fluid on lacustrine reservoir in the actic area of the north part of Bozhong Depression, Bohai Bay Basin[J]. Earth Science, 2019, 44(8): 2751-2760.
[3] 于志超, 刘立, 孙晓明, 等. 歧口凹陷古近纪热流体活动的证据及其对储层物性的影响[J]. 吉林大学学报(地球科学版), 2012, 42(S3): 1-13.
YU Zhichao, LIU Li, SUN Xiaoming, et al. Evidence of Paleogene thermal fluid activities and their impact on porosity-permeability of reservoir in Qikou Sag[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S3): 1-13.
[4] 李继岩, 王永诗, 刘传虎, 等. 热液流体活动及其对碳酸盐岩储集层改造定量评价: 以渤海湾盆地东营凹陷西部下古生界为例[J]. 石油勘探与开发, 2016, 43(3): 359-366.
LI Jiyan, WANG Yongshi, LIU Chuanhu, et al. Hydrothermal fluid activity and the quantitative evaluation of its impact on carbonate reservoirs: A case study of the Lower Paleozoic in the west of Dongying Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2016, 43(3): 359-366.
[5] 金小燕, 杜晓峰, 王清斌, 等. 渤海海域火山热流体及其对碳酸盐岩优质储层的控制作用[J]. 石油实验地质, 2018, 40(6): 800-807, 842.
JIN Xiaoyan, DU Xiaofeng, WANG Qingbin, et al. Volcanic hydrothermal fluid activity and its influence on carbonate reservoirs in Bohai Sea Area[J]. Petroleum Geology & Experiment, 2018, 40(6): 800-807, 842.
[6] 龙华山, 向才富, 牛嘉玉, 等. 歧口凹陷滨海断裂带热流体活动及其对油气成藏的影响[J]. 石油学报, 2014, 35(4): 673-684.
LONG Huashan, XIANG Caifu, NIU Jiayu, et al. Hydrothermal fluid flow and its influence on the hydrocarbon migration and accumulation along Binhai fault in Qikou Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2014, 35(4): 673-684.
[7] 金之钧, 朱东亚, 孟庆强, 等. 塔里木盆地热液流体活动及其对油气运移的影响[J]. 岩石学报, 2013, 29(3): 1048-1058.
JIN Zhijun, ZHU Dongya, MENG Qingqiang, et al. Hydrothermal activites and influences on migration of oil and gas in Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(3): 1048-1058.
[8] 侯中帅, 陈世悦, 刘惠民, 等. 东营凹陷热液流体活动及其油气地质意义[J]. 中国矿业大学学报, 2019, 48(5): 1090-1101.
HOU Zhongshuai, CHEN Shiyue, LIU Huimin, et al. Hydrothermal fluid activity and its hydrocarbon geological significance in Dongying Depression[J]. Journal of China University of Mining & Technology, 2019, 48(5): 1090-1101.
[9] 杨扬, 高福红, 蒲秀刚. 歧口凹陷古近系沙河街组热液作用及其对湖相碳酸盐岩储层的影响[J]. 中国石油大学学报(自然科学版), 2020, 44(2): 20-30.
YANG Yang, GAO Fuhong, PU Xiugang. Hydrothermal activities of Paleogene Shahejie Formation in Qikou Sag and its effects on lacustrine carbonate reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(2): 20-30.
[10] WHITE D E. Thermal waters of volcanic origin[J]. Geological Society of America Bulletin, 1957, 68(12): 1637-1658.
[11] 赵贤正, 蒲秀刚, 姜文亚, 等. 黄骅坳陷古生界含油气系统勘探突破及其意义[J]. 石油勘探与开发, 2019, 46(4): 621-632.
ZHAO Xianzheng, PU Xiugang, JIANG Wenya, et al. An exploration breakthrough in Paleozoic petroleum system of Huanghua Depression in Dagang Oilfield and its significance[J]. Petroleum Exploration and Development, 2019, 46(4): 621-632.
[12] 赵贤正, 周立宏, 蒲秀刚, 等. 湖相页岩滞留烃形成条件与富集模式: 以渤海湾盆地黄骅坳陷古近系为例[J]. 石油勘探与开发, 2020, 47(5): 856-869.
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Formation conditions and enrichment model of retained petroleum in lacustrine shale: A case study of the Paleogene in Huanghua depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(5): 856-869.
[13] 周立宏, 赵贤正, 柴公权, 等. 陆相页岩油效益勘探开发关键技术与工程实践: 以渤海湾盆地沧东凹陷古近系孔二段为例[J]. 石油勘探与开发, 2020, 47(5): 1059-1066.
ZHOU Lihong, ZHAO Xianzheng, CHAI Gongquan, et al. Key exploration & development technologies and engineering practice of continental shale oil: A case study of Member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 47(5): 1059-1066.
[14] 蒲秀刚, 赵贤正, 王家豪, 等. 渤海湾盆地滨海地区古近系沙河街组一段滑塌型湖底扇储集层特征及主控因素[J]. 石油勘探与开发, 2020, 47(5): 913-924.
PU Xiugang, ZHAO Xianzheng, WANG Jiahao, et al. Reservoirs properties of slump-type sub-lacustrine fans and their main control factors in first member of Paleogene Shahejie Formation in Binhai area, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(5): 913-924.
[15] 张跃, 陈世悦, 孟庆爱, 等. 黄骅坳陷沧东凹陷孔二段细粒沉积岩中方沸石的发现及其地质意义[J]. 中国石油勘探, 2015, 20(4): 37-43.
ZHANG Yue, CHEN Shiyue, MENG Qingai, et al. The discovery of analcite in fine-grained sedimentary rocks of the second Member of Kongdian Formation in Cangdong Sag, Huanghua Depression: Implications for early digenetic environment[J]. China Petroleum Exploration, 2015, 20(4): 37-43.
[16] LUHR J F, KURTIS KYSER T. Primary igneous analcime: The colima minettes[J]. American Mineralogist, 1989, 74(1/2): 216-223.
[17] 宋柏荣, 韩洪斗, 崔向东, 等. 渤海湾盆地辽河坳陷古近系沙河街组四段湖相方沸石白云岩成因分析[J]. 古地理学报, 2015, 17(1): 33-44.
SONG Bairong, HAN hongdou, CUI Xiangdong, et al. Petrogenesis analysis of lacustrine analcite dolostone of the Member 4 of Paleogene Shahejie Formation in Liaohe Depression, Bohai Bay Basin[J]. Journal of Palaeogeography, 2015, 17(1): 33-44.
[18] 金强, 熊寿生, 卢培德. 中国断陷盆地主要生油岩中的火山活动及其意义[J]. 地质论评, 1988, 44(2): 136-142.
JIN Qiang, XIONG Shousheng, LU Peide. Volcanic activity in major source rocks in faulted basins of China and its significance[J]. Geological Review, 1988, 44(2): 136-142.
[19] LIU Qingxin, SONG Yan, JIANG Lin, et al. Geochemistry and correlation of oils and source rocks in Banqiao Sag, Huanghua Depression, northern China[J]. International Journal of Coal Geology, 2017, 176/177: 49-68.
[20] 叶琳, 张俊霞, 卢刚臣, 等. 黄骅坳陷孔南地区古近纪构造—地层格架和幕式演化过程[J]. 地球科学(中国地质大学学报), 2013, 38(2): 379-389.
YE Lin, ZHANG Junxia, LU Gangchen, et al. Paleogene structure-stratigraphic framework and multiple episode evolution in Kongdian area, Huanghua Depression[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(2): 379-389.
[21] 宋双, 王龙, 郭佳, 等. 黄骅坳陷新生界火成岩岩相与储集性能分析[J]. 地质学刊, 2019, 43(1): 25-31.
SONG Shuang, WANG Long, GUO Jia, et al. Lithofacies and reservoir property of Cenozoic igneous rocks in the Huanghua Depression[J]. Journal of Geology, 2019, 43(1): 25-31.
[22] 刘中云, 肖尚斌, 姜在兴. 渤海湾盆地第三系火山岩及其成因[J]. 石油大学学报(自然科学版), 2001, 25(1): 22-26.
LIU Zhongyun, XIAO Shangbin, JIANG Zaixing. Volcanic rocks of Bohai Bay Basin in Tertiary and their genesis[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2001, 25(1): 22-26.
[23] 张雪梅, 曾威, 李灵月, 等. 黄骅坳陷古近系孔店组火成岩岩石学、地球化学特征[J]. 地质调查与研究, 2015, 38(4): 248-255.
ZHANG Xuemei, ZENG Wei, LI Lingyue, et al. Petrology and geochemistry characteristics of magmatic rocks in Kongdian Formation in the Huanghua Depression[J]. Geological Survey and Research, 2015, 38(4): 248-255.
[24] BENNETT S A, ACHTERBERG E P, CONNELLY D P, et al. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes[J]. Earth Planetary Science Letters, 2008, 270(3/4): 157-167.
[25] BOYLE E A, BERGQUIST B A, KAYSER R A, et al. Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: Temporal variability and an intermediate water hydrothermal plume[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 933-952.
[26] TAGLIABUE A, BOPP L, DUTAY J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory[J]. Nature Geoscience, 2010, 3(4): 252-256.
[27] MUROWCHICK J B, BARNES H. Effects of temperature and degree of supersaturation on pyrite morphology[J]. American Mineralogist, 1987, 72(11/12): 1241-1250.
[28] PROL-LEDESMA R M, CANET C, VILLANUEVA-ESTRADA R E, et al. Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents[J]. American Mineralogist, 2010, 95(10): 1500-1507.
[29] 张永超. 西藏查个勒铅锌钼铜矿床特征及成因: 来自流体包裹体、矿物学、年代学和地球化学证据[D]. 北京: 中国地质大学, 2019.
ZHANG Yongchao. Fluid inclusion, mineralogical, geochronological, and geochemical constrains on the characteristics and genesis of the Chagele Pd-Zn-Mo-Cu deposit in Tibet, China[D]. Beijing: China University of Geosciences, 2019.
[30] XIE Xiaogang, BYERLY G R, FERRELL JR R E. IIb trioctahedral chlorite from the Barberton greenstone belt: Crystal structure and rock composition constraints with implications to geothermometry[J]. Contributions to Mineralogy Petrology, 1997, 126(3): 275-291.
[31] 张伟, 张寿庭, 曹华文, 等. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 318-328.
ZHANG Wei, ZHANG Shouting, CAO Huawen, et al. Characteristics of chlorite minerals from Xiaolonghe tin deposit in West Yunnan, China and their geological implications[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(3): 318-328.
[32] NIETO F. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach[J]. European Journal of Mineralogy, 1997, 9: 829-841.
[33] RAUSELL-COLOM J A, WIEWIORA A, MATESANZ E. Relationship between composition and d001 for chlorite[J]. American Mineralogist, 1991, 76(7/8): 1373-1379.
[34] BATTAGLIA S. Applying X-ray geothermometer diffraction to a chlorite[J]. Clays and Clay Minerals, 1999, 47(1): 54-63.
[35] 周慧, 郗爱华, 熊益学, 等. 流体包裹体的研究进展[J]. 矿物学报, 2013, 33(1): 92-100.
ZHOU Hui, XI Aihua, XIONG Yixue, et al. Progress in the research on fluid inclusions[J]. Acta Mineralogica Sinica, 2013, 33(1): 92-100.
[36] BEYSSAC O, GOFFé B, CHOPIN C, et al. Raman spectra of carbonaceous material in metasediments: A new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871.
[37] 蒋裕强, 谷一凡, 刘均, 等. 川东北龙岗东地区二叠系—三叠系热液活动证据及意义[J]. 沉积学报, 2018, 36(1): 1-11.
JIANG Yuqiang, GU Yifan, LIU Jun, et al. The evidence of hydrothermal activity and its significance of Permian-Triassic strata, Eastern Longgang Area, Northeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2018, 36(1): 1-11.
[38] 张招崇, 侯通, 李厚民, 等. 岩浆-热液系统中铁的富集机制探讨[J]. 岩石学报, 2014, 30(5): 1189-1204.
ZHANG Zhaochong, HOU Tong, LI Houmin, et al. Enrichment mechanism of iron in magmatic-hydrothermal system[J]. Acta Petrologica Sinica, 2014, 30(5): 1189-1204.
[39] 周锡强, 遇昊, 黄泰誉, 等. 重晶石沉积类型及成因评述: 兼论扬子地区下寒武统重晶石的富集机制[J]. 沉积学报, 2016, 34(6): 1044-1056.
ZHOU Xiqiang, YU Hao, HUANG Taiyu, et al. Genetic classification of sedimentary barites and discussion on the origin of the Lower Cambrian barite-rich deposits in the Yangtze Block, South China[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1044-1056.
[40] 高志武, 苏岩, 李余华, 等. 滇西镇康放羊山Cu-Pb-Zn多金属矿床矿物稀土元素地球化学特征及意义[J]. 矿物学报, 2020, 41(1): 1-13.
GAO Zhiwu, SU Yan, LI Yuhua, et al. Geochemical characteristics and significance of rare earth elements of the Cu-Pb-Zn polymetallic deposit in Fangyangshan of Zhenkang county, Western Yunnan[J]. Acta Mineralogica Sinica, 2020, 41(1): 1-13.
[41] 韩银学, 李忠, 韩登林, 等. 塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J]. 岩石学报, 2009, 25(10): 2405-2416.
HAN Yinxue, LI Zhong, HAN Denglin, et al. REE characteristics of matrix dolomites and its orign of Lower Ordovician in eastern Tabei area, Tarim Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2405-2416.
[42] MELKA K. A proposal of classification of chlorite minerals[J]. Věst Ústř Úst Geol, 1965, 40: 23-27.
[43] URUBEK T, DOLNíČEK Z, KROPáČ K. Genesis of syntectonic hydrothermal veins in the igneous rock of teschenite association (Outer Western Carpathians, Czech Republic): Growth mechanism and origin of fluids[J]. Geologica Carpathica, 2014, 65(5): 419-431.
[44] 南云, 柳益群, 周鼎武, 等. 三塘湖盆地晚石炭世火山岩气孔和裂缝填充物特征及其成因研究[J]. 岩石学报, 2016, 32(6): 1901-1913.
NAN Yun, LIU Yiqun, ZHOU Dingwu, et al. Characteristics and origin of amygdale and crack fillers in volcanic rock of Late Carboniferous in Santanghu Basin, Xinjiang[J]. Acta Petrologica Sinica, 2016, 32(6): 1901-1913.
[45] GHOBARKAR H, SCHäF O. Effect of temperature on hydrothermal synthesis of analcime and viséite[J]. Materials Science Engineering: B, 1999, 60(3): 163-167.
[46] KUMAR S, CHATTOPADHYAYA M C. Synthesis of natrolite using the hydrothermal apparatus[J]. Journal of the Indian Chemical Society, 2006, 83(12): 1288-1290.
[47] 钟大康, 杨喆, 孙海涛, 等. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例[J]. 古地理学报, 2018, 20(1): 19-32.
ZHONG Dakang, YANG Zhe, SUN Haitao, et al. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia[J]. Journal of Palaeogeography, 2018, 20(1): 19-32.
[48] 陈丽华, 魏宝和, 何锦发. 电子探针波谱及能谱分析在石油地质上的应用[M]. 北京: 石油工业出版社, 1991.
CHEN Lihua, WEI Baohe, HE Jinfa.Application of electron probe spectrum and energy spectrum analysis in petroleum geology[M]. Beijing: Petroleum Industry Press, 1991.
文章导航

/