[1] NYE R, DI TOMMASO D.Well optimization using a LWD spectral azimuthal gamma ray tool in unconventional reservoirs[R]. OMC 2013-137, 2013.
[2] CARRILERO S G, HOLMES A, HINZ D, et al. A method for calculating more accurate stratigraphic positioning of horizontal wells using continuous inclination and azimuthal gamma ray images even while sliding[R]. SPE 191740-MS, 2018.
[3] LI K, GAO J, ZHAO X. Tool design of look-ahead electromagnetic resistivity LWD for boundary identification in anisotropic formation[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106537.
[4] CHEN G, CHEN L, LI Q. Comparison and application of neural networks in LWD lithology identification[J]. IOP Conference Series: Earth and Environmental Science, 2020, 526: 012146.
[5] VIENS C, CLARK T, LIGHTFOOT J, et al. Real-time downhole data resolves lithology related drilling behavior[R]. SPE 189697-MS, 2018.
[6] BOOTLE R, WAUGH M, BITTAR M, et al. Laminated sand shale formation evaluation using azimuthal LWD resistivity[R]. SPE 123890-MS, 2009.
[7] 孙东征, 杨进, 杨翔骞, 等. 地层压力随钻预测技术在高温高压井的应用[J]. 石油钻采工艺, 2016, 38(6): 746-751.
SUN Dongzheng, YANG Jin, YANG Xiangqian, et al. Application of formation pressure prediction while drilling technology in HTHP wells[J]. Oil Drilling & Production Technology, 2016, 38(6): 746-751.
[8] POZO M, TORRES F, BEDOYA J, et al. Enhancing performance and operational safety of Argentinean Vaca Muerta shale wells by drilling high pressure formations using managed pressure drilling[R]. SPE 187142-MS, 2017.
[9] LUTFALLAH M, HIBLER A P, MISHRA A, et al. Optimizing a unique new generation LWD technology for petrophysical evaluation, well-placement, geological mapping and completion design: Carbonate reservoir case study[R]. SPE 181289-MS, 2016.
[10] MARTIN S J, THOMAS M G, HAMMONS S D, et al. Real-time azimuthal gamma and resistivity LWD data used to navigate complex unconventional reservoir: Western US Land[R]. SPE 165923-MS, 2013.
[11] GUPTA K D, VALLEGA V, MANIAR H, et al. A deep-learning approach for borehole image interpretation[R]. The Woodlands, Texas, USA: 2019 SPWLA 60th Annual Symposium, 2019.
[12] POPA A, CONNEL S. Optimizing horizontal well placement through stratigraphic performance prediction using artificial intelligence[R]. Calgary: SPE Annual Technical Conference and Exhibition, 2019.
[13] MOHAMED I M, MOHAMED S, MAZHER I, et al. Formation lithology classification: Insights into machine learning methods[R]. Calgary: SPE Annual Technical Conference and Exhibition, 2019.
[14] LI Xinran, WANG Lide, LI Peiqiang. The study on composite load model structure of artificial neural network[R]. Nanjing: 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008.
[15] 薛波, 杨青, 张超虹. 基于形态学滤波与小波变换的测井曲线自动分层方法[J]. 地球物理学进展, 2020, 35(1): 203-210.
XUE Bo, YANG Qing, ZHANG Chaohong. Automatic slicing method of logging curves based on morphological filtering and wavelet transform[J]. Progress in Geophysics, 2020, 35(1): 203-210.
[16] YUAN Mei, WU Yuting, LI Lin. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[R]. Beijing: 2016 IEEE International Conference on Aircraft Utility Systems, 2016.
[17] 李洪强, 丁景丽, 林楠, 等. 随钻伽马测量数据处理方法的研究及应用[J]. 石油钻探技术, 2008, 36(4): 12-14.
LI Hongqiang, DING Jingli, LIN Nan, et al. Research and application of data processing method of gamma ray measurement while drilling[J]. Petroleum Drilling Technology, 2008, 36(4): 12-14.
[18] 周旋, 周树道, 黄峰, 等. 基于小波变换的图像增强新算法[J]. 计算机应用, 2005, 25(3): 606-608.
ZHOU Xuan, ZHOU Shudao, HUANG Feng, et al. A new image enhancement algorithm based on wavelet transform[J]. Computer Applications, 2005, 25(3): 606-608.
[19] 董泽, 谢华, 韩璞, 等. 小波变换模极大值消噪算法的研究[J]. 电力科学与工程, 2005(3): 12-16.
DONG Ze, XIE Hua, HAN Pu, et al.Research on wavelet transform modulus maximum denoising algorithm[J]. Power Science and Engineering, 2005(3): 12-16.
[20] 刁彦华, 王玉田, 陈国通. 基于小波变换模极大值的信号奇异性检测[J]. 河北工业科技, 2004, 21(1): 1-3.
DIAO Yanhua, WANG Yutian, CHEN Guotong. Signal singularity detection based on modulus maxima of wavelet transform[J]. Hebei Industrial Science and Technology, 2004, 21(1): 1-3.
[21] COLE T J, GREEN P J. Smoothing reference centile curves: The LMS method and penalized likelihood[J]. Statistics in Medicine, 1992, 11(10): 1305-1319.
[22] WANG J, HUISZOON C, XU L, et al. Quantitative study of natural gamma ray depth of image and dip angle calculations[R]. New Orleans, Louisiana: the SPWLA 54th Annual Logging Symposium, 2013.
[23] GRAVES A. Long short-term memory[M]. Berlin: Springer, 2012: 1735-1780.
[24] LI D, ZHANG Y, GONG D, et al. Gas data prediction based on LSTM neural network[J]. IOP Conference Series: Earth and Environmental Science, 2020, 750(1): 012175.
[25] LIU J, WANG G, DUAN L Y, et al. Skeleton-based human action recognition with global context-aware attention LSTM networks[J]. IEEE Transactions on Image Processing, 2018, 27(99): 1586-1599.
[26] 权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶航迹预测模型[J]. 计算机科学, 2018, 45(S2): 126-131.
QUAN Bo, YANG Bochen, HU Keqi, et al. Ship track prediction model based on LSTM[J]. Computer Science, 2018, 45(S2): 126-131.
[27] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.
WANG Xin, WU Ji, LIU Chao, et al. Fault time series prediction based on LSTM recurrent neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784.