油气田开发

鄂尔多斯盆地不同类型储集层水驱油特征实验

  • 肖文联 ,
  • 杨玉斌 ,
  • 李闽 ,
  • 李农 ,
  • 尤靖茜 ,
  • 赵金洲 ,
  • 郑玲丽 ,
  • 周克明 ,
  • 任吉田 ,
  • 王玥
展开
  • 1.西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500;
    2.中国石油西南油气田公司,成都 610213;
    3.中国石油长庆油田分公司,西安 710018
肖文联(1983-),男,四川渠县人,博士,西南石油大学石油与天然气工程学院副教授,主要从事岩石物理与渗流以及油气田开发方面的研究工作。地址:四川省成都市新都区新都大道8号,西南石油大学油气藏地质及开发工程国家重点实验室,邮政编码:610500。E-mail: joshxiao@163.com

收稿日期: 2020-11-24

  修回日期: 2021-06-24

  网络出版日期: 2021-07-23

基金资助

国家自然科学基金联合基金重点支持项目“黏度可控的原位增黏体系构建及高效驱油机理研究”(U19B2010); 西南石油大学非常规油气渗流物理青年科技创新团队(2018CXTD10)

Experimental study on the oil production characteristics during the waterflooding of different types of reservoirs in Ordos Basin, NW China

  • XIAO Wenlian ,
  • YANG Yubin ,
  • LI Min ,
  • LI Nong ,
  • YOU Jingxi ,
  • ZHAO Jinzhou ,
  • ZHENG Lingli ,
  • ZHOU Keming ,
  • REN Jitian ,
  • WANG Yue
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. PetroChina Southwest Oil and Gas Field Branch, Chengdu 610213, China;
    3. PetroChina Changqing Oilfield Company, Xi'an 710018, China

Received date: 2020-11-24

  Revised date: 2021-06-24

  Online published: 2021-07-23

摘要

以鄂尔多斯盆地低渗透、特低渗透和超低渗透储集层岩心为研究对象,通过岩心微观可视化水驱油实验和柱塞岩心水驱油核磁共振实验,揭示不同类型储集层水驱油过程中原油赋存状态、动用特征以及剩余油分布,分析孔隙结构和驱替压力对水驱油效率的影响。研究表明,在束缚水状态下,低渗透储集层岩心中原油主要赋存于中—大孔隙,而小孔隙和中等孔隙是特低渗透储集层和超低渗透储集层岩心中原油的主要分布空间。水驱油过程中,3类储集层岩心优先动用中—大孔隙中的原油;随着储集层岩心渗透率的逐渐降低,水驱前缘依次表现出均匀驱替、网状驱替和指状驱替,且驱油效率依次降低。水驱油结束后,低渗透储集层岩心中剩余油主要分布于中等孔隙,且以膜状和角状的分散相为主;特低渗透和超低渗透储集层岩心中剩余油主要分布于小孔隙,且以分散相和绕流形成的连续相为主。低渗透岩心具有较高的稳定驱油效率,特低渗透和超低渗透岩心驱油效率较低,且随着驱替压力的增加表现出一定程度的增加。 图14 表1 参38

本文引用格式

肖文联 , 杨玉斌 , 李闽 , 李农 , 尤靖茜 , 赵金洲 , 郑玲丽 , 周克明 , 任吉田 , 王玥 . 鄂尔多斯盆地不同类型储集层水驱油特征实验[J]. 石油勘探与开发, 2021 , 48(4) : 807 -816 . DOI: 10.11698/PED.2021.04.13

Abstract

Waterflooding experiments were conducted in micro-models (microscopic scale) and on plunger cores from low permeability, extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different displacement pressures using the NMR techniques to find out pore-scale oil occurrence state, oil production characteristics and residual oil distribution during the process of waterflooding and analyze the effect of pore structure and displacement pressure on waterflooding efficiency. Under bound water condition, crude oil mainly occurs in medium and large pores in the low-permeability sample, while small pores and medium pores are the main distribution space of crude oil in extra-low permeability and ultra-low permeability samples. During the waterflooding, crude oil in the medium and large pores of the three types of samples are preferentially produced. With the decrease of permeability of the samples, the waterflooding front sequentially shows uniform displacement, network displacement and finger displacement, and correspondingly the oil recovery factors decrease successively. After waterflooding, the residual oil in low-permeability samples is mainly distributed in medium pores, and appears in membranous and angular dispersed phase; but that in the extra-low and ultra-low permeability samples is mainly distributed in small pores, and appears in continuous phase formed by a bypass flow and dispersed phase. The low-permeability samples have higher and stable oil displacement efficiency, while the oil displacement efficiency of the extra-low permeability and ultra-low permeability samples is lower, but increases to a certain extent with the increase of displacement pressure.

参考文献

[1] 韩进, 孙卫, 白云云, 等. 基于真实砂岩微观水驱油实验的低渗透储集层流体渗流特征及驱油效率影响因素研究: 以姬塬油田王盘山长6储集层为例[J]. 地质科技情报, 2018, 37(6): 89-95.
HAN Jin, SUN Wei, BAI Yunyun, et al. Fluid seepage characteristics of permeability reservoirs based on real sandstone microscopic water flooding experiments: Taking Chang 6 reservoir of Wangpanshan in Ji-yuan Oilfield as an example[J]. Geological Science and Technology Information, 2018, 37(6): 89-95.
[2] 高辉, 孙卫, 路勇, 等. 特低渗透砂岩储集层油水微观渗流通道与驱替特征实验研究: 以鄂尔多斯盆地延长组为例[J]. 油气地质与采收率, 2011, 18(1): 58-62.
GAO Hui, SUN Wei, LU Yong, et al. Experimental study on micro-flow channel and displacement characteristic of ultra-low permeability sandstone reservoir: Taking Yanchang Formation, Ordos Basin as example[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(1): 58-62.
[3] 曲志浩, 孔令荣. 低渗透油层微观水驱油特征[J]. 西北大学学报(自然科学版), 2002, 32(4): 329-334.
QU Zhihao, KONG Lingrong. A study of characteristics of low permeability formation with water flooding using micromodel experiment[J]. Journal of Northwest University (Natural Science Edition), 2002, 32(4): 329-334.
[4] 孙卫, 曲志浩, 李劲峰. 安塞特低渗透油田见水后的水驱油机理及开发效果分析[J]. 石油实验地质, 1999, 21(3): 256-260.
SUN Wei, QU Zhihao, LI Jinfeng. Analysis on the water-drive mechanism and development results of Ansai supertight oil field after water-occurrence[J]. Experimental Petroleum Geology, 1999, 21(3): 256-260.
[5] 杨正明, 高天放, 冯骋, 等. 非均质性对超低渗透油藏产水机制影响实验[J]. 科技导报, 2014, 32(13): 36-40.
YANG Zhengming, GAO Tianfang, FENG Cheng, et al. Effect of heterogeneity on water producing of ultra-low permeability oil reservoir: An experimental study[J]. Science & Technology Review, 2014, 32(13): 36-40.
[6] 俞启泰. 关于剩余油研究的探讨[J]. 石油勘探与开发, 1997, 24(2): 46-50.
YU Qitai. Discussion on the research of remaining oil[J]. Petroleum Exploration and Development, 1997, 24(2): 46-50.
[7] 李滔, 肖文联, 李闽, 等. 砂岩储集层微观水驱油实验与数值模拟研究[J]. 特种油气藏, 2017, 24(2): 155-159.
LI Tao, XIAO Wenlian, LI Min, et al. Tests and numerical simulation for microscopic waterflooding in sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2017, 24(2): 155-159.
[8] 王瑞飞, 孙卫. 特低渗透砂岩微观模型水驱油实验影响驱油效率因素[J]. 石油实验地质, 2010, 32(1): 93-97.
WANG Ruifei, SUN Wei. Main controls for oil displacement efficiency by the micro-model water flooding experiment in ultra-low permeability sandstone reservoir[J]. Petroleum Geology & Experiment, 2010, 32(1): 93-97.
[9] 欧阳思琪, 孟子圆. 特低-超低渗储集层微观水驱油特征及影响因素分析: 以鄂尔多斯盆地合水地区长6、长8段储集层为例[J]. 石油地质与工程, 2019, 33(3): 62-67.
OUYANG Siqi, MENG Ziyuan. Microscopic water flooding characteristics and influencing factor in extra-ultra low permeability reservoirs: A case study of Chang 6 and Chang 8 reservoirs in Heshui area of the Ordos Basin[J]. Petroleum Geology and Engineering, 2019, 33(3): 62-67.
[10] 孔令荣, 曲志浩, 万发宝, 等. 砂岩微观孔隙模型两相驱替实验[J]. 石油勘探与开发, 1991, 18(4): 79-85.
KONG Lingrong, QU Zhihao, WAN Fabao, et al. Two-phase displacement experiment of sandstone micro-porosity model[J]. Petroleum Exploration and Development, 1991, 18(4): 79-85.
[11] 张景存, 高树堂, 梁桂卿. 在微观薄层砂岩模型上驱油机理的直观研究[J]. 石油学报, 1985, 6(4): 77-82.
ZHANG Jingcun, GAO Shutang, LIANG Guiqing. A visual study on the mechanism of surfactant/polymer flooding a micro-layered sandstone[J]. Acta Petrolei Sinica, 1985, 6(4): 77-82.
[12] 周克明, 李宁, 张清秀, 等. 气水两相渗流及封闭气的形成机理实验研究[J]. 天然气工业, 2002, 22(S1): 122-125.
ZHOU Keming, LI Ning, ZHANG Qingxiu, et al. Experimental study on gas-water two phase flow and confined gas formation mechanism[J]. Natural Gas Industry, 2002, 22(S1): 122-125.
[13] 周克明, 李农, 袁小玲. 油水两相渗流及剩余油分布规律可视化实验研究[R]. 青岛: 中国油气地质与提高采收率研讨会, 2017.
ZHOU Keming, LI Nong, YUAN Xiaoling. Visual experimental study on oil-water two-phase flow and residual oil distribution[R]. Qingdao: Symposium on Petroleum Geology and Enhanced Oil Recovery in China, 2017.
[14] 殷代印, 房雨佳, 辛勇亮. 低渗透油藏改变驱替方向微观机理研究[J]. 特种油气藏, 2017, 24(3): 59-63.
YIN Daiyin, FANG Yujia, XIN YongLiang. Study on microscopic mechanism of changing displacement direction in low-permeability reservoirs[J]. Special Oil & Gas Reservoirs, 2017, 24(3): 59-63.
[15] 殷代印, 项俊辉, 房雨佳. 低渗透油藏微乳液驱微观剩余油驱替机理研究[J]. 特种油气藏, 2017, 24(5): 136-140.
YIN Daiyin, XIANG Junhui, FANG Yujia. Study on microemulsion flooding mechanism for the residual oil in low-permeability reservoirs[J]. Special Oil & Gas Reservoirs, 2017, 24(5): 136-140.
[16] 李俊键, 刘洋, 高亚军, 等. 微观孔喉结构非均质性对剩余油分布形态的影响[J]. 石油勘探与开发, 2018, 45(6): 1043-1052.
LI Junjian, LIU Yang, GAO Yajun, et al. Effects of the microscopic pore structure heterogeneity on the distribution and morphology of remaining oil[J]. Petroleum Exploration and Development, 2018, 45(6): 1043-1052.
[17] 王明磊, 张遂, 张福东, 等. 鄂尔多斯盆地延长组长7段致密油微观赋存形式定量研究[J]. 石油勘探与开发, 2015, 42(6): 757-762.
WANG Minglei, ZHANG Sui, ZHANG Fudong, et al. Quantitative research on tight oil microscopic state of Chang 7 member of the Triassic Yanchang Formation in the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 757-762.
[18] GUO Chaohua, WANG Xin, WANG Hua, et al. Effect of pore structure on displacement efficiency and oil-cluster morphology by using micro computed tomography (μCT) technique[J]. Fuel, 2018, 230: 430-439.
[19] 李海波, 郭和坤, 杨正明, 等. 鄂尔多斯盆地陕北地区三叠系长7致密油赋存空间[J]. 石油勘探与开发, 2015, 42(3): 396-400.
LI Haibo, GUO Hekun, YANG Zhengming, et al. Tight oil occurrence space of Triassic Chang 7 Member in Northern Shaanxi Area, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 396-400.
[20] YANG Ping, GUO Hekun, YANG Daoyong. Determination of residual oil distribution during waterflooding in tight oil formations with NMR relaxometry measurements[J]. Energy & Fuels, 2013, 27(10): 5750-5756.
[21] CHEN Meng, DAI Jiacai, LIU Xiangjun, et al. Effect of displacement rates on fluid distributions and dynamics during water flooding in tight oil sandstone cores from nuclear magnetic resonance (NMR)[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106588.
[22] 李爱芬, 任晓霞, 王桂娟, 等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版), 2015, 39(6): 92-98.
LI Aifen, REN Xiaoxia, WANG Guijuan, et al. Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(6): 92-98.
[23] 高辉, 程媛, 王小军, 等. 基于核磁共振驱替技术的超低渗透砂岩水驱油微观机理实验[J]. 地球物理学进展, 2015, 30(5): 2157-2163.
GAO Hui, CHENG Yuan, WANG Xiaojun, et al. Experiment of microscopic water displacement mechanism based on NMR displacement technology in ultra-low permeability sandstone[J]. Progress in Geophysics, 2015, 30(5): 2157-2163.
[24] 杨正明, 郭和坤, 刘学伟, 等. 特低-超低渗透油气藏特色实验技术[M]. 北京: 石油工业出版社, 2012.
YANG Zhengming, GUO Hekun, LIU Xuewei, et al. Characteristic experimental technology of an extra-ultra low permeability reservoir[M]. Beijing: Petroleum Industry Press, 2012.
[25] 郭公建, 谷长春. 水驱油孔隙动用规律的核磁共振实验研究[J]. 西安石油大学学报(自然科学版), 2005, 20(5): 45-48.
GUO Gongjian, GU Changchun. Experimental study of active pore distribution during water driving by using NMR[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2005, 20(5): 45-48.
[26] WAN Tao, WANG Weimin, JIANG Jiaqi, et al. Pore-scale analysis of gas huff-n-puff enhanced oil recovery and waterflooding process[J]. Fuel, 2018, 215: 561-571.
[27] 俞启泰, 李文兴. 一种新的预测油田产量变化的方法: 剩余可采储量采油速度法[J]. 石油勘探与开发, 1997, 24(6): 82-85.
YU Qitai, LI Wenxing. A new method for predicting oilfield production change: Residual recoverable reserves oil production velocity method[J]. Petroleum Exploration and Development, 1997, 24(6): 82-85.
[28] 陈元千. 现代油藏工程[M]. 北京: 石油工业出版社, 2001.
CHEN Yuanqian. Modern reservoir engineering[M]. Beijing: Petroleum Industry Press, 2001.
[29] 姜汉桥, 谷建伟, 陈民锋, 等. 时变油藏地质模型下剩余油分布的数值模拟研究[J]. 石油勘探与开发, 2005, 32(2): 91-93.
JIANG Hanqiao, GU Jianwei, CHEN Minfeng, et al. Reservoir simulation of remaining oil distribution based on time-variant reservoir model[J]. Petroleum Exploration and Development, 2005, 32(2): 91-93.
[30] 曹军, 李宇征, 程豪杰, 等. 长庆不同类型油藏开发规律研究[J]. 海洋石油, 2016, 36(3): 53-60, 118.
CAO Jun, LI Yuzheng, CHENG Haojie, et al. Study on the development law for different types of reservoirs in Changqing Oil Field[J]. Offshore Oil, 2016, 36(3): 53-60, 118.
[31] 罗蛰潭, 王允诚. 油气储集层的孔隙结构[M]. 北京: 科学出版社, 1986.
LUO Zhetan, WANG Yuncheng. Pore structure of oil and gas reservoirs[M]. Beijing: Science Press, 1986.
[32] 曹宝格, 韩永林, 余永进, 等. 低渗透油藏注水开发储集层动态特征变化[J]. 科学技术与工程, 2020, 20(5): 1820-1825.
CAO Baoge, HAN Yonglin, YU Yongjin, et al. Reservoir characteristics changes in waterflooding development[J]. Science Technology and Engineering, 2020, 20(5): 1820-1825.
[33] 中华人民共和国国家发展和改革委员会. 油藏岩石润湿性测定方法: SY/T 5153—2007[S]. 北京: 石油工业出版社, 2007.
National Development and Reform Commission. Test method of reservoir rock wettability: SY/T 5153—2007[S]. Beijing: Petroleum Industry Press, 2007.
[34] DUNN K J, BERGMAN D J, LATORRACA G A. Nuclear magnetic resonance: Petrophysical and logging applications[M]. New York: Pergamon Press, 2002.
[35] 李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2): 273-280.
LI Haibo, ZHU Juyi, GUO Hekun. Methods for calculating pore radius distribution in rock from NMR T2 spectrum[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 273-280.
[36] 杨正明, 刘学伟, 李海波, 等. 致密储集层渗吸影响因素分析与渗吸作用效果评价[J]. 石油勘探与开发, 2019, 46(4): 739-745.
YANG Zhengming, LIU Xuewei, LI Haibo, et al. Analysis on the influencing factors of imbibition and the effect evaluation of imbibition in tight reservoirs[J]. Petroleum Exploration and Development, 2019, 46(4): 739-745.
[37] 中华人民共和国国家质量监督检验检疫总局. 岩石中两相流体相对渗透率测定方法: GB/T 28912—2012[S]. 北京: 中国标准出版社, 2012.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for two phase relative permeability in rock: GB/T 28912—2012[S]. Beijing: Standards Press of China, 2012.
[38] 熊伟, 朱志强, 高树生, 等. 应用核磁共振技术评价水驱开发效果[J]. 科技导报, 2011, 29(26): 34-37.
XIONG Wei, ZHU Zhiqiang, GAO Shusheng, et al. Water-drive mechanism with nuclear magnetic resonance technology[J]. Science & Technology Review, 2011, 29(26): 34-37.
文章导航

/