油气田开发

广义管流-渗流耦合试井分析模型

  • 林加恩 ,
  • 何辉 ,
  • 王怡华
展开
  • 1.西安石油大学石油工程学院,西安 710065;
    2.西部低渗—特低渗油藏开发与治理教育部工程研究中心,西安 710065;
    3.西安华线石油科技有限公司,西安 710065
林加恩(1961-),男,陕西汉中人,博士,西安石油大学教授,主要从事油气藏工程与监测、试井分析及其应用软件技术研究工作。地址:陕西省西安市雁塔区西安石油大学石油工程学院,邮政编码:710065。E-mail: jn5000@126.com

收稿日期: 2019-12-18

  修回日期: 2021-06-16

  网络出版日期: 2021-07-23

基金资助

陕西省教育厅重点实验室科研计划项目(13JS090)

A well test analysis model of generalized tube flow and seepage coupling

  • LIN Jia'en ,
  • HE Hui ,
  • WANG Yihua
Expand
  • 1. College of Petroleum Engineering, Xi'an Petroleum University, Xi'an 710065, China;
    2. MOE Engineering Research Center of Development & Management of Low & Ultra-Low Permeability Oilfields in West China, Xi'an 710065, China;
    3. Xi'an Sinoline Petroleum Science & Technology Co., Ltd, Xi'an 710065, China

Received date: 2019-12-18

  Revised date: 2021-06-16

  Online published: 2021-07-23

摘要

利用“广义流度”实现了管流和渗流模型在形式上的统一、实现了常用线性和非线性流动规律在形式上的统一,使得油气藏在不同区域或不同尺度上能够使用相同形式的运动方程构建统一的控制方程。定义了不同流动条件的广义流度,并由此建立了广义管流-渗流耦合的基本流动控制方程,构建了管道形复合储集体模型和部分打开圆柱形储集体模型这两种典型管流-渗流耦合的试井分析示例模型。管道形复合储集体模型压力降落双对数图可呈现两组线性流特征。部分打开圆柱形储集体模型压力降落双对数图可出现球形流和线性流特征,亦可出现球形流和径向流特征。两个示例模型的压力恢复导数曲线在前期与各自压力降落导数曲线基本重合,在后期均呈下坠特征,且生产时间越短下坠特征出现的时间越早。通过3个应用实例分析验证了模型的实用性和可靠性。 图15 表4 参36

本文引用格式

林加恩 , 何辉 , 王怡华 . 广义管流-渗流耦合试井分析模型[J]. 石油勘探与开发, 2021 , 48(4) : 797 -806 . DOI: 10.11698/PED.2021.04.12

Abstract

"Generalized mobility" is used to realize the unification of tube flow and seepage in form and the unification of commonly used linear and nonlinear flow laws in form, which makes it possible to use the same form of motion equations to construct unified governing equations for reservoirs of different scales in different regions. Firstly, by defining the generalized mobility under different flow conditions, the basic equation governing fluid flow in reservoir coupling generalized tube flow and seepage is established. Secondly, two typical well test analysis models for coupling tube flow and seepage flow are given, namely, pipe shaped composite reservoir model and partially open cylindrical reservoir model. The log-log pressure draw-down type-curve of composite pipe shaped reservoir model can show characteristics of two sets of linear flow. The log-log pressure drawdown plot of partially opened cylindrical reservoir model can show the characteristics of spherical flow and linear flow, as well as spherical flow and radial flow. The pressure build-up derivative curves of the two models basically coincide with their respective pressure drawdown derivative curves in the early stage, pulling down features in the late stage, and the shorter the production time is, the earlier the pulling down feature appears. Finally, the practicability and reliability of the models presented in this paper are verified by three application examples.

参考文献

[1] BRUCE G H, PEACEMAN D W, RACHFORD H H, et al. Calculation of unsteady-state gas flow through porous media[J]. Journal of Petroleum Technology, 1953, 5(3): 79-92.
[2] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. SPE Journal, 1963, 3(3): 245-255.
[3] CAMACHO V R, VÁSQUEZ C M, CASTREJÓN A R. Pressure-transient and decline-curve behavior in naturally fractured vuggy carbonate reservoirs[R]. SPE 77689, 2005.
[4] 葛家理, 宁正福, 刘月田, 等. 现代油藏渗流力学原理[M]. 北京: 石油工业出版社, 2001: 23-35, 103-105.
GE Jiali, NING Zhengfu, LIU Yuetian, et al. Principles of modern reservoir percolation mechanics[M]. Beijing: Petroleum Industry Press, 2001: 23-35, 103-105.
[5] 刘化普, 刘慧卿, 王敬. 分形低渗透缝洞型油藏非线性渗流规律[J]. 计算物理, 2018, 35(1): 55-63.
LIU Huapu, LIU Huiqing, WANG Jing. Nonlinear percolation law in low permeability fissure cave reservoir with fractal dimension[J]. Chinese Journal of Computational Physics, 2018, 35(1): 55-63.
[6] 陈力, 王媛, 陈晓静. 切向位移作用下粗糙单裂隙高速非达西渗流特性研究[J]. 水电能源科学, 2019, 37(2): 110-114.
CHEN Li, WANG Yuan, CHEN Xiaojing. Study on high speed non-Darcy seepage characteristics of rough single fissure under tangential displacement[J]. Water Resources and Power, 2019, 37(2): 110-114.
[7] 戴德宣, 王少伟. 趋旋性微生物在幂律流体饱和水平多孔层中的热-生物对流稳定性分析[J]. 应用数学和力学, 2019, 40(8): 856-865.
DAI Dexuan, WANG Shaowei. Linear stability analysis on thermo-bioconvection of gyrotactic microorganisms in a horizontal porous layer saturated by a power-law fluid[J]. Applied Mathematics and Mechanics, 2019, 40(8): 856-865.
[8] 宋付权. 变形介质低渗透油藏的产能分析[J]. 特种油气藏, 2002, 9(4): 33-35.
SONG Fuquan. Productivity analysis for low permeable reservoirs of media deformation[J]. Special Oil and Gas Reservoirs, 2002, 9(4): 33-35.
[9] KIYOUMARS R, SABA M A, DOMINIQUE M. Linear and non-linear approaches to predict the Darcy-Weisbach friction factor of overland flow using the extreme learning machine approach[J]. International Journal of Sediment Research, 2018, 33(4): 415-432.
[10] MU M, XU J. A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow[J]. SIAM Journal on Numerical Analysis, 2007, 45(5): 1801-1813.
[11] SUTERA S P, SKALAK R. The history of Poiseuille's law[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20.
[12] 杜殿发, 李冬冬, 石达友, 等. 稠油油藏试井理论研究[J]. 计算物理, 2011, 28(3): 385-396.
DU Dianfa, LI Dongdong, SHI Dayou, et al. A study on heavy oil well test[J]. Chinese Journal of Computational Physics, 2011, 28(3): 385-396.
[13] 朱常玉, 程时清, 唐恩高, 等. 聚合物驱三区复合模型试井分析方法[J]. 大庆石油地质与开发, 2016, 35(3): 106-110.
ZHU Changyu, CHENG Shiqing, TANG Engao, et al. Well-test analyzing method with three-zone composite model for the polymer flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(3): 106-110.
[14] 尹洪军, 邢翠巧, 计秉玉, 等. 大尺度溶洞发育的缝洞型油藏试井解释模型研究[J]. 特种油气藏, 2018, 25(5): 84-88.
YIN Hongjun, XING Cuiqiao, JI Bingyu, et al. Well test interpretation model for fracture-cavity reservoir with well developed large-scale caves[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 84-88.
[15] POPOV P, QUIN G, BI L, et al.Multi scale methods for modeling fluid flow through naturally fractured carbonate karsts reservoirs[R]. SPE 110778, 2007.
[16] 李笑萍, 赵天奉. 考虑变质量湍流影响的水平井流入动态分析[J]. 石油学报, 2002, 23(6): 63-67.
LI Xiaoping, ZHAO Tianfeng. Inflow performance analysis on horizontal well bore with changing-quality-turbulence effection[J]. Acta Petrolei Sinica, 2002, 23(6): 63-67.
[17] 袁淋, 李晓平, 袁港. 低渗气藏产水水平井井筒压降规律研究[J]. 水动力学研究与进展A辑, 2015, 30(1): 112-118.
YUAN Lin, LI Xiaoping, YUAN Gang. Law of gas-water horizontal wellbore pressure drop in low permeability gas reservoir[J]. Chinese Journal of Hydrodynamics, 2015, 30(1): 112-118.
[18] 李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669-678.
LI Yang, KANG Zhijiang, XUE Zhaojie, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678.
[19] COLLINS D, NGHIEM L, SHARMA R, et al. Field-scale simulation of horizontal wells[J]. Journal of Canadian Petroleum Technology, 1992, 31(1): 14-21.
[20] 吴淑红, 刘翔鹗, 郭尚平. 水平段井筒管流的简化模型[J]. 石油勘探与开发, 1999, 26(4): 64-65, 106.
WU Shuhong, LIU Xiang'e, GUO Shangping, et al. A simplified model of flow in horizontal wellbore[J]. Petroleum Exploration and Development, 1999, 26(4): 64-65, 106.
[21] 陈崇希, 胡立堂. 渗流-管流耦合模型及其应用综述[J]. 水文地质工程地质, 2008, 35(3): 70-75.
CHEN Chongxi, HU Litang. A review of the seepage-pipe coupling model and its application[J]. Hydrogeology & Engineering Geology, 2008, 35(3): 70-75.
[22] 陈崇希. 岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究[J]. 地球科学, 1995, 20(4): 361-366.
CHEN Chongxi. Groundwater flow model and simulation method in triple media of karstic tube-fissure-pore[J]. Earth Science (Journal of China University of Geosciences), 1995, 20(4): 361-366.
[23] 赵延林, 张盛国, 万文, 等. 基于流态转换理论巷道前伏溶洞突水的流固耦合-强度折减法分析[J]. 岩石力学与工程学报, 2014, 33(9): 1852-1862.
ZHAO Yanlin, ZHANG Shengguo, WAN Wen, et al. Solid-fluid coupling-strength reduction method for karst cave water inrush before roadway based on flow state conversion theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1852-1862.
[24] 万义钊, 刘曰武. 缝洞型油藏三维离散缝洞数值试井模型[J]. 力学学报, 2015, 47(6): 1000-1008.
WAN Yizhao, LIU Yuewu. Three dimensional discrete-fracture-cavity numerical well test model for fractured-cavity reservoir[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1000-1008.
[25] 段宝江, 常宝华, 安为国, 等. 双洞型碳酸盐岩油藏试井分析研究[J]. 科学技术与工程, 2012, 12(25): 6305-6309.
DUAN Baojiang, CHANG Baohua, AN Weiguo, et al. Research on well test analysis of the dual cavity/fracture system in carbonate formations[J]. Science Technology & Engineering, 2012, 12(25): 6305-6309.
[26] WU Yonghui, CHENG Linsong, HUANG Shijun.Semi-analytical model for simulating fluid flow in naturally fractured reservoirs with non-homogeneous vugs and fractures[R]. SPE 194023, 2018.
[27] POPOV P, EFENDIEV Y, QIN G. Multiscale modeling and simulations of flows in naturally fractured karst reservoirs[J]. Communications in Computational Physics, 2009, 6(1): 162-184.
[28] BRINKMAN H C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[J]. Applied Scientific Research, 1949, 1(1): 27-34.
[29] JIE H, JOHN E K, MOHAMED F.A unified finite difference model for the simulation of transient flow in naturally fractured carbonate karst reservoirs[R]. SPE 173262, 2015.
[30] 黄朝琴, 姚军, 李亚军, 等. 基于均匀化理论的缝洞型介质渗透性分析[J]. 中国科学: 技术科学, 2010, 40(9): 1095-1103.
HUANG Zhaoqin, YAO Jun, LI Yajun, et al. Permeability analysis of fractured vuggy porous media based on homogenization theory[J]. SCIENCE CHINA Technological Sciences, 2010, 53(3): 839-847.
[31] LIN Jiaen, HE Hui, HAN Zhangying. Flow simulation and transient well analysis method based on generalized pipe flow seepage coupling: WO2020/224539 (PCT/CN2020/088309)[P].2020-11-12.
[32] RAGHAVAN R.Well-test analysis for multiphase flow[R]. SPE 14098, 1989.
[33] MARHAENDRAJANA T, ARIADJI T, PERMADI A K.Performance prediction of a well under multiphase flow conditions[R]. SPE 80534, 2003.
[34] ABATE J, WHITT W. A unified framework for numerically inverting Laplace transforms[J]. INFORMS Journal on Computing, 2006, 18(4): 408-421.
[35] GRINGARTEN A C, BOURDET D, LANDEL P A, et al.A comparison between different wellbore storage and skin type curves for early-time transient analysis[R]. SPE 8205, 1979.
[36] KUCHUK F J.A new method for determination of reservoir pressure[R]. SPE 56418, 1999.
文章导航

/