油气勘探

玄武岩方解石脉成因及其对储集层质量的影响——以准噶尔盆地玛湖凹陷东斜坡石炭系为例

  • 夏鲁 ,
  • 操应长 ,
  • 卞保力 ,
  • 刘海磊 ,
  • 王晓雪 ,
  • 赵一伟 ,
  • 燕苗苗
展开
  • 1.中国石油大学(华东)深层油气重点实验室,山东青岛 266580;
    2.中国石油新疆油田勘探开发研究院,新疆克拉玛依 834000;
    3.中国石油塔里木油田勘探开发研究院,新疆库尔勒 841000
夏鲁(1985-),男,山东滕州人,博士,中国石油大学(华东)地球科学与技术学院在站博士后,主要从事致密砂岩油气藏及储集层地质学研究。地址:山东省青岛市黄岛区长江西路66号,中国石油大学工科楼C座,邮政编码:266580。E-mail: xialu999@126.com

收稿日期: 2019-10-30

  修回日期: 2021-05-20

  网络出版日期: 2021-07-23

基金资助

国家自然科学基金委油气成藏机理创新研究群体(41821002); 中国石油天然气股份有限公司重大科技专项《准噶尔盆地油藏富集规律及勘探技术研究与应用》(2017E-0401); 博士后科学基金面上项目(2019M662465)

Genesis of calcite vein in basalt and its effect on reservoir quality: A case study of the Carboniferous in the east slope of Mahu sag, Junggar Basin, NW China

  • XIA Lu ,
  • CAO Yingchang ,
  • BIAN Baoli ,
  • LIU Hailei ,
  • WANG Xiaoxue ,
  • ZHAO Yiwei ,
  • YAN Miaomiao
Expand
  • 1. Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China;
    2. Research Institute of Petroleum Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, China;
    3. Research Institute of Petroleum Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China

Received date: 2019-10-30

  Revised date: 2021-05-20

  Online published: 2021-07-23

摘要

基于岩心、岩石薄片观察,结合X射线荧光分析、微区原位主微量和稀土元素、碳氧锶同位素组成、流体包裹体等测试分析及盆地模拟,对准噶尔盆地玛湖凹陷东斜坡石炭系玄武岩方解石脉特征及成因进行研究。结果表明研究区脉体发育3期方解石充填:第Ⅰ期贫锰,稀土元素配分曲线平坦,强负铈异常,弱—中等负铕异常,碳同位素组成偏轻,表明其形成受到大气淡水影响;第Ⅱ期富锰和轻稀土,具有弱正铈异常和轻微正铕异常,碳同位素组成相对较重而锶同位素比值较低,表明深部成岩流体对其形成有一定影响;第Ⅲ期富铁和锰,稀土元素配分曲线与第Ⅱ期相似但铈异常和铕异常波动较大。第Ⅰ、Ⅱ期形成于距今约250~260 Ma的浅埋藏环境,对应于二叠纪末期晚海西运动;第Ⅲ期很可能形成于晚三叠世印支运动。研究认为不整合面附近玄武岩裂缝中的方解石沉淀主要与大气淡水淋滤上覆下二叠统风城组碳酸盐矿物有关,较早地破坏了石炭系风化壳储集层,但是在充填程度较弱或后期溶蚀作用较强的位置仍可发育相对优质储集层,如风城组缺失的构造高部位、垂向上距离风城组较远的位置以及靠近湖盆内部的古潜山等地区。 图16 表1 参40

本文引用格式

夏鲁 , 操应长 , 卞保力 , 刘海磊 , 王晓雪 , 赵一伟 , 燕苗苗 . 玄武岩方解石脉成因及其对储集层质量的影响——以准噶尔盆地玛湖凹陷东斜坡石炭系为例[J]. 石油勘探与开发, 2021 , 48(4) : 745 -755 . DOI: 10.11698/PED.2021.04.07

Abstract

The characteristics and genesis of the calcite veins in Carboniferous basalt in the east slope of Mahu Sag, Junggar Basin are investigated based on observation of cores and thin sections; analyses of X-ray fluorescence, in situ major, trace and rare earth elements (REE), carbon, oxygen and strontium isotopes, fluid inclusions, as well as basin modeling. There are three stages of calcite fillings. The stageⅠcalcite is characterized by low Mn content, flat REE pattern, strong negative Ce anomaly, weak to moderate negative Eu anomaly, and light carbon isotopic composition, indicating the formation of the calcite was affected by meteoric water. The stage Ⅱ calcite shows higher Mn and light REE contents, weak positive Ce anomaly and slight positive Eu anomaly, and a little heavier carbon isotopic composition and slightly lower strontium isotope ratio than the stageⅠcalcite, suggesting that deep diagenetic fluids affected the formation of the stage Ⅱ calcite to some extent. The stage Ⅲ calcite is rich in iron and manganese and has REE pattern similar to that of the stage Ⅱ calcite, but the cerium and europium enomalies vary significantly. The stageⅠand Ⅱcalcites were formed in shallow diagenetic environment at approximately 250-260 Ma, corresponding to Late Hercynian orogeny at Late Permian. The stage Ⅲ calcite was probably formed in the Indo-China movement during Late Triassic. It is believed that the precipitation of calcite in basalt fractures near unconformity was related to leaching and dissolution of carbonates in the overlying Lower Permian Fengcheng Formation by meteoric water, which destructed the Carboniferous weathering crust reservoirs in early stage. Relatively high quality reservoirs could be developed in positions with weak filling and strong late dissolution, such as structural high parts with Fengcheng Formation missing, distant strata from Fengcheng Formation vertically, buried hills inside lake basin, etc.

参考文献

[1] 胡素云, 王小军, 曹正林, 等. 准噶尔盆地大中型气田(藏)形成条件与勘探方向[J]. 石油勘探与开发, 2020, 47(2): 247-259.
HU Suyun, WANG Xiaojun, CAO Zhenglin, et al. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2): 247-259.
[2] 于洪洲. 准西北缘哈山地区复杂构造带火山岩储层发育特征及成因模式[J]. 油气地质与采收率, 2019, 26(3): 46-53.
YU Hongzhou. Development characteristics and genetic model of volcanic reservoir in complex tectonic belt of Hashan Area, northwestern margin of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 46-53.
[3] 阿不力米提·依明, 查明, 杨帆, 等. 玛湖-达巴松地区石炭系火成岩储集层分布及控制因素[J]. 新疆石油地质, 2019, 40(5): 564-569.
ABLIMITI Yiming, ZHA Ming, YANG Fan, et al. Carboniferous igneous reservoir distribution and its controlling factors in Mahu-Dabasong Area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(5): 564-569.
[4] MORAD S, KETZER M, DEROS L F. Spatial and temporal distributions of diagenetic alterations in siliciclastic rocks[J]. Sedimentology, 2000, 47(1): 95-120.
[5] RASMUSSEN B, KRAPEZ B. Evidence of hydrocarbon and metalliferous fluid migration in the Palaeoproterozoic Earaheedy Basin of Western Australia[J]. Journal of the Geological Society, 2000, 157(2): 355-366.
[6] PACKARD J, AL-AASM I S, SAMSON I, et al. A devonian “hydrothermal” chert reservoir: The 225 Bcf Parkland Field, British Columbia, Canada[J]. AAPG Bulletin, 2001, 85(1): 51-84.
[7] BOLES J R, EICHHUBL P, GARVEN G, et al. Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement[J]. AAPG Bulletin, 2004, 88(7): 947-970.
[8] 胡文瑄, 金之钧, 张义杰, 等. 油气幕式成藏的矿物学和地球化学记录: 以准噶尔盆地西北缘油藏为例[J]. 石油与天然气地质, 2006, 27(4): 442-450.
HU Wenxuan, JIN Zhijun, ZHANG Yijie, et al. Mineralogy and geochemical records of episodic reservoiring of hydrocarbon: Example from the reservoirs in the northwest margin of Junggar Basin[J]. Oil & Gas Geology, 2006, 27(4): 442-450.
[9] JIN Z, CAO J, HU W, et al. Episodic petroleum fluid migration in fault zones of the northwestern Junggar Basin (northwest China): Evidence from hydrocarbon-bearing zoned calcite cement[J]. AAPG Bulletin, 2008, 92(9): 1225-1243.
[10] CAO J, JIN Z, HU W, et al. Improved understanding of petroleum migration history in the Hongche fault zone, northwestern Junggar Basin (northwest China): Constrained by vein-calcite fluid inclusions and trace elements[J]. Marine and Petroleum Geology, 2010, 27(1): 61-68.
[11] 林会喜, 孟凡超, 徐佑德, 等. 准噶尔盆地西北缘石炭—二叠系火山岩裂缝中方解石脉成因[J]. 地质科学, 2016, 51(3): 824-834.
LIN Huixi, MENG Fanchao, XU Youde, et al. Genesis of calcite veins in Carboniferous-Permian volcanic fractures, northwestern Junggar Basin[J]. Chinese Journal of Geology, 2016, 51(3): 824-834.
[12] MUCHEZ P H, SLOBODNIK M, VIAENE W A, et al. Geochemical constraints on the origin and migration of paleofluids at the northern margin of the Variscan foreland, southern Belgium[J]. Sedimentary Geology, 1995, 96(3): 191-200.
[13] CONTI A, TURPIN L, POLINO R, et al. The relationship between evolution of fluid chemistry and the style of brittle deformation: Examples from the Northern Apennines (Italy)[J]. Tectonophysics, 2001, 330(1): 103-117.
[14] BARKER S L, COX S F, EGGINNS S M, et al. Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow[J]. Earth and Planetary Science Letters, 2006, 250(2): 331-344.
[15] MARFIL R, CAJA M A, TSIGE M, et al. Carbonate-cemented stylolites and fractures in the Upper Jurassic limestones of the eastern Iberian Range, Spain: A record of palaeofluids composition and thermal history[J]. Sedimentary Geology, 2005, 178(4): 237-257.
[16] 曹剑, 胡文瑄, 姚素平, 等. 准噶尔盆地石炭—二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移[J]. 沉积学报, 2007, 25(5): 722-729.
CAO Jian, HU Wenxuan, YAO Suping, et al. Carbon, oxygen and strontium isotope composition of calcite veins in the Carboniferous to Permian source sequences of the Junggar Basin: Implications on petroleum fluid migration[J]. Acta Sedimentologica Sinica, 2007, 25(5): 722-729.
[17] 刘勇, 袁海锋, 高耀, 等. 准噶尔盆地哈山地区石炭系—二叠系裂缝充填方解石的成因机制及石油地质意义[J]. 地质学报, 2017, 91(11): 2573-2583.
LIU Yong, YUAN Haifeng, GAO Yao, et al. Genetic mechanism of calcite veins in Carboniferous-Permian volcanic reservoirs in the Hashan Area, Junggar Basin and its petroleum geological significance[J]. Acta Geologica Sinica, 2017, 91(11): 2573-2583.
[18] 李军, 唐勇, 吴涛, 等. 准噶尔盆地玛湖凹陷砾岩大油区超压成因及其油气成藏效应[J]. 石油勘探与开发, 2020, 47(4): 679-690.
LI Jun, TANG Yong, WU Tao, et al. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(4): 679-690.
[19] 陈新, 卢华复, 舒良树, 等. 准噶尔盆地构造演化分析新进展[J]. 高校地质学报, 2002, 8(3): 257-267.
CHEN Xin, LU Huafu, SHU Liangshu, et al. Study on tectonic evolution of Junggar Basin[J]. Geological Journal of China Universities, 2002, 8(3): 257-267.
[20] 何登发, 周路, 吴晓智. 准噶尔盆地古隆起形成演化与油气聚集[M]. 北京: 石油工业出版社, 2012: 117.
HE Dengfa, ZHOU Lu, WU Xiaozhi. Occurrence and evolution of paleo-uplift and petroleum accumulation in Junggar Basin[M]. Beijing: Petroleum Industry Press, 2012: 117.
[21] 吴孔友, 瞿建华, 王鹤华. 准噶尔盆地大侏罗沟断层走滑特征、形成机制及控藏作用[J]. 中国石油大学学报(自然科学版), 2014, 38(5): 41-47.
WU Kongyou, QU Jianhua, WANG Hehua. Strike-slip characteristics, forming mechanisms and controlling reservoirs of Dazhuluogou Fault in Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(5): 41-47.
[22] 陈石, 郭召杰, 漆家福, 等. 准噶尔盆地西北缘三期走滑构造及其油气意义[J]. 石油天然气地质, 2016, 37(3): 322-331.
CHEN Shi, GUO Zhaojie, QI Jiafu, et al. Three-stage strike-slip fault systems at northwestern margin of Junggar Basin and their im- plications for hydrocarbon exploration[J]. Oil & Gas Geology, 2016, 37(3): 322-331.
[23] 何登发, 吴松涛, 赵龙, 等. 环玛湖凹陷二叠—三叠系沉积构造背景及其演化[J]. 新疆石油地质, 2018, 39(1): 35-47.
HE Dengfa, WU Songtao, ZHAO Long, et al. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 35-47.
[24] 陈刚强, 阿布力米提·依明, 白雷, 等. 准噶尔盆地玛湖凹陷东斜坡深层成藏领域研究[J]. 西南石油大学学报(自然科学版), 2013, 35(6): 31-38.
CHEN Gangqiang, ABLIMITI Yiming, BAI Lei, et al. Petroleum accumulation field in the deep strata of the eastern slope area of the Mahu Sag, Junggar Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6): 31-38.
[25] LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[26] AL-AASM I S, TAYLOR B E, SOUTH B E. Stable isotope analysis of multiple carbonate samples using selective acid extraction[J]. Chemical Geology (Isotope Geoscience), 1990, 80: 119-125.
[27] AL-AASM I S, MUIR I, MORAD S. Diagenetic conditions of fibrous calcite vein formation in black shales: Petrographic and chemical evidence[J]. Canadian Journal of Petroleum Geology, 1993, 41: 46-56.
[28] 胡文瑄, 陈琪, 王小林, 等. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J]. 石油与天然气地质, 2010, 31(6): 810-818.
HU Wenxuan, CHEN Qi, WANG Xiaolin, et al. REE models for the dis-crimination of fluids in the formation and evolution of dolomite reservoirs[J]. Oil & Gas Geology, 2010, 31(6): 810-818.
[29] 高键, 何生, 何治亮, 等. 中扬子京山地区方解石脉成因及其对油气保存的指示意义[J]. 石油与天然气地质, 2014, 35(1): 33-41.
GAO Jian, HE Sheng, HE Zhiliang, et al. Genesis of calcite vein and its implication to petroleum preservation in Jingshan region, Mid-Yangtze[J]. Oil & Gas Geology, 2014, 35(1): 33-41.
[30] MASUDA A, NAKAMURA N, TANAKA T. Fine structures of mutually normalized rare-earth patterns of chondrites[J]. Geochimica et Cosmochimica Acta, 1973, 37(2): 239-248.
[31] 李荣清. 湖南多金属成矿区方解石的稀土元素分布特征及其成因意义[J]. 矿物岩石, 1995, 15(4): 72-77.
LI Rongqing. Rare earth element distribution and its genetic signification of calcite in Hunan polymetallic metallogenic province[J]. Journal of Mineralogy and Petrology, 1995, 15(4): 72-77.
[32] SCHMID S, WORDEN R, FISHER Q. Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland[J]. Marine and Petroleum Geology, 2004, 21(3): 299-315.
[33] XI K, CAO Y, LIN M, et al. Applications of light stable isotopes (C, O, H) in the study of sandstone diagenesis: A review[J]. Acta Geologica Sinica, 2019, 93(1): 213-226.
[34] HAYES M J, BOLES J R. Evidence for meteoric recharge in the San Joaquin Basin, California, provided by isotope and trace element geochemistry[J]. Marine and Petroleum Geology, 1993, 10(2): 135-144.
[35] KLINKHAMMER G P, ELDERFIELD H, MITRA A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113.
[36] 单祥, 郭华军, 邹志文, 等. 碱性环境成岩作用及其对储集层质量的影响: 以准噶尔盆地西北缘中—下二叠统碎屑岩储集层为例[J]. 新疆石油地质, 2018, 39(1): 55-62.
SHAN Xiang, GUO Huajun, ZOU Zhiwen, et al. Diagenesis in alkaline environment and its influences on reservoir quality: A case study of middle-lower Permian clastic reservoirs in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 55-62.
[37] 周路, 郑金云, 雷德文, 等. 准噶尔盆地车莫古隆起侏罗系剥蚀厚度恢复[J]. 古地理学报, 2007, 9(3): 243-252.
ZHOU Lu, ZHENG Jinyun, LEI Dewen, et al. Recovery of eroded thickness of the Jurassic of Chemo palaeouplift in Junggar Basin[J]. Journal of Palaeogeography, 2007, 9(3): 243-252.
[38] 周勇水, 邱楠生, 宋鑫颖, 等. 准噶尔盆地腹部超压地层烃源岩热演化史研究[J]. 地质科学, 2014, 49(3): 812-822.
ZHOU Yongshui, QIU Nansheng, SONG Xinying, et al. Study of source rock thermal evolution in over pressure formations in the hinterland of Junggar Basin[J]. Chinese Journal of Geology, 2014, 49(3): 812-822.
[39] 张义杰, 曹剑, 胡文瑄. 准噶尔盆地油气成藏期次确定与成藏组合划分[J]. 石油勘探与开发, 2010, 37(3): 257-262.
ZHANG Yijie, CAO Jian, HU Wenxuan. Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2010, 37(3): 257-262.
[40] 范存辉, 秦启荣, 秦章晋. 火山岩油气储层识别与预测: 以准噶尔盆地西北缘中拐凸起石炭系火山岩为例[M]. 北京: 科学出版社, 2016: 161-162.
FAN Cunhui, QIN Qirong, QIN Zhangjin. Volcanic rock reservoir identification and prediction: A case study of Carboniferous volcanic rocks in Zhongguai Swell in northwestern margin of Junggar Basin[M]. Beijing: Science Press, 2016: 161-162.
文章导航

/