[1] 胡素云, 王小军, 曹正林, 等. 准噶尔盆地大中型气田(藏)形成条件与勘探方向[J]. 石油勘探与开发, 2020, 47(2): 247-259.
HU Suyun, WANG Xiaojun, CAO Zhenglin, et al. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2): 247-259.
[2] 于洪洲. 准西北缘哈山地区复杂构造带火山岩储层发育特征及成因模式[J]. 油气地质与采收率, 2019, 26(3): 46-53.
YU Hongzhou. Development characteristics and genetic model of volcanic reservoir in complex tectonic belt of Hashan Area, northwestern margin of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 46-53.
[3] 阿不力米提·依明, 查明, 杨帆, 等. 玛湖-达巴松地区石炭系火成岩储集层分布及控制因素[J]. 新疆石油地质, 2019, 40(5): 564-569.
ABLIMITI Yiming, ZHA Ming, YANG Fan, et al. Carboniferous igneous reservoir distribution and its controlling factors in Mahu-Dabasong Area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(5): 564-569.
[4] MORAD S, KETZER M, DEROS L F. Spatial and temporal distributions of diagenetic alterations in siliciclastic rocks[J]. Sedimentology, 2000, 47(1): 95-120.
[5] RASMUSSEN B, KRAPEZ B. Evidence of hydrocarbon and metalliferous fluid migration in the Palaeoproterozoic Earaheedy Basin of Western Australia[J]. Journal of the Geological Society, 2000, 157(2): 355-366.
[6] PACKARD J, AL-AASM I S, SAMSON I, et al. A devonian “hydrothermal” chert reservoir: The 225 Bcf Parkland Field, British Columbia, Canada[J]. AAPG Bulletin, 2001, 85(1): 51-84.
[7] BOLES J R, EICHHUBL P, GARVEN G, et al. Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement[J]. AAPG Bulletin, 2004, 88(7): 947-970.
[8] 胡文瑄, 金之钧, 张义杰, 等. 油气幕式成藏的矿物学和地球化学记录: 以准噶尔盆地西北缘油藏为例[J]. 石油与天然气地质, 2006, 27(4): 442-450.
HU Wenxuan, JIN Zhijun, ZHANG Yijie, et al. Mineralogy and geochemical records of episodic reservoiring of hydrocarbon: Example from the reservoirs in the northwest margin of Junggar Basin[J]. Oil & Gas Geology, 2006, 27(4): 442-450.
[9] JIN Z, CAO J, HU W, et al. Episodic petroleum fluid migration in fault zones of the northwestern Junggar Basin (northwest China): Evidence from hydrocarbon-bearing zoned calcite cement[J]. AAPG Bulletin, 2008, 92(9): 1225-1243.
[10] CAO J, JIN Z, HU W, et al. Improved understanding of petroleum migration history in the Hongche fault zone, northwestern Junggar Basin (northwest China): Constrained by vein-calcite fluid inclusions and trace elements[J]. Marine and Petroleum Geology, 2010, 27(1): 61-68.
[11] 林会喜, 孟凡超, 徐佑德, 等. 准噶尔盆地西北缘石炭—二叠系火山岩裂缝中方解石脉成因[J]. 地质科学, 2016, 51(3): 824-834.
LIN Huixi, MENG Fanchao, XU Youde, et al. Genesis of calcite veins in Carboniferous-Permian volcanic fractures, northwestern Junggar Basin[J]. Chinese Journal of Geology, 2016, 51(3): 824-834.
[12] MUCHEZ P H, SLOBODNIK M, VIAENE W A, et al. Geochemical constraints on the origin and migration of paleofluids at the northern margin of the Variscan foreland, southern Belgium[J]. Sedimentary Geology, 1995, 96(3): 191-200.
[13] CONTI A, TURPIN L, POLINO R, et al. The relationship between evolution of fluid chemistry and the style of brittle deformation: Examples from the Northern Apennines (Italy)[J]. Tectonophysics, 2001, 330(1): 103-117.
[14] BARKER S L, COX S F, EGGINNS S M, et al. Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow[J]. Earth and Planetary Science Letters, 2006, 250(2): 331-344.
[15] MARFIL R, CAJA M A, TSIGE M, et al. Carbonate-cemented stylolites and fractures in the Upper Jurassic limestones of the eastern Iberian Range, Spain: A record of palaeofluids composition and thermal history[J]. Sedimentary Geology, 2005, 178(4): 237-257.
[16] 曹剑, 胡文瑄, 姚素平, 等. 准噶尔盆地石炭—二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移[J]. 沉积学报, 2007, 25(5): 722-729.
CAO Jian, HU Wenxuan, YAO Suping, et al. Carbon, oxygen and strontium isotope composition of calcite veins in the Carboniferous to Permian source sequences of the Junggar Basin: Implications on petroleum fluid migration[J]. Acta Sedimentologica Sinica, 2007, 25(5): 722-729.
[17] 刘勇, 袁海锋, 高耀, 等. 准噶尔盆地哈山地区石炭系—二叠系裂缝充填方解石的成因机制及石油地质意义[J]. 地质学报, 2017, 91(11): 2573-2583.
LIU Yong, YUAN Haifeng, GAO Yao, et al. Genetic mechanism of calcite veins in Carboniferous-Permian volcanic reservoirs in the Hashan Area, Junggar Basin and its petroleum geological significance[J]. Acta Geologica Sinica, 2017, 91(11): 2573-2583.
[18] 李军, 唐勇, 吴涛, 等. 准噶尔盆地玛湖凹陷砾岩大油区超压成因及其油气成藏效应[J]. 石油勘探与开发, 2020, 47(4): 679-690.
LI Jun, TANG Yong, WU Tao, et al. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(4): 679-690.
[19] 陈新, 卢华复, 舒良树, 等. 准噶尔盆地构造演化分析新进展[J]. 高校地质学报, 2002, 8(3): 257-267.
CHEN Xin, LU Huafu, SHU Liangshu, et al. Study on tectonic evolution of Junggar Basin[J]. Geological Journal of China Universities, 2002, 8(3): 257-267.
[20] 何登发, 周路, 吴晓智. 准噶尔盆地古隆起形成演化与油气聚集[M]. 北京: 石油工业出版社, 2012: 117.
HE Dengfa, ZHOU Lu, WU Xiaozhi. Occurrence and evolution of paleo-uplift and petroleum accumulation in Junggar Basin[M]. Beijing: Petroleum Industry Press, 2012: 117.
[21] 吴孔友, 瞿建华, 王鹤华. 准噶尔盆地大侏罗沟断层走滑特征、形成机制及控藏作用[J]. 中国石油大学学报(自然科学版), 2014, 38(5): 41-47.
WU Kongyou, QU Jianhua, WANG Hehua. Strike-slip characteristics, forming mechanisms and controlling reservoirs of Dazhuluogou Fault in Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(5): 41-47.
[22] 陈石, 郭召杰, 漆家福, 等. 准噶尔盆地西北缘三期走滑构造及其油气意义[J]. 石油天然气地质, 2016, 37(3): 322-331.
CHEN Shi, GUO Zhaojie, QI Jiafu, et al. Three-stage strike-slip fault systems at northwestern margin of Junggar Basin and their im- plications for hydrocarbon exploration[J]. Oil & Gas Geology, 2016, 37(3): 322-331.
[23] 何登发, 吴松涛, 赵龙, 等. 环玛湖凹陷二叠—三叠系沉积构造背景及其演化[J]. 新疆石油地质, 2018, 39(1): 35-47.
HE Dengfa, WU Songtao, ZHAO Long, et al. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 35-47.
[24] 陈刚强, 阿布力米提·依明, 白雷, 等. 准噶尔盆地玛湖凹陷东斜坡深层成藏领域研究[J]. 西南石油大学学报(自然科学版), 2013, 35(6): 31-38.
CHEN Gangqiang, ABLIMITI Yiming, BAI Lei, et al. Petroleum accumulation field in the deep strata of the eastern slope area of the Mahu Sag, Junggar Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6): 31-38.
[25] LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[26] AL-AASM I S, TAYLOR B E, SOUTH B E. Stable isotope analysis of multiple carbonate samples using selective acid extraction[J]. Chemical Geology (Isotope Geoscience), 1990, 80: 119-125.
[27] AL-AASM I S, MUIR I, MORAD S. Diagenetic conditions of fibrous calcite vein formation in black shales: Petrographic and chemical evidence[J]. Canadian Journal of Petroleum Geology, 1993, 41: 46-56.
[28] 胡文瑄, 陈琪, 王小林, 等. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J]. 石油与天然气地质, 2010, 31(6): 810-818.
HU Wenxuan, CHEN Qi, WANG Xiaolin, et al. REE models for the dis-crimination of fluids in the formation and evolution of dolomite reservoirs[J]. Oil & Gas Geology, 2010, 31(6): 810-818.
[29] 高键, 何生, 何治亮, 等. 中扬子京山地区方解石脉成因及其对油气保存的指示意义[J]. 石油与天然气地质, 2014, 35(1): 33-41.
GAO Jian, HE Sheng, HE Zhiliang, et al. Genesis of calcite vein and its implication to petroleum preservation in Jingshan region, Mid-Yangtze[J]. Oil & Gas Geology, 2014, 35(1): 33-41.
[30] MASUDA A, NAKAMURA N, TANAKA T. Fine structures of mutually normalized rare-earth patterns of chondrites[J]. Geochimica et Cosmochimica Acta, 1973, 37(2): 239-248.
[31] 李荣清. 湖南多金属成矿区方解石的稀土元素分布特征及其成因意义[J]. 矿物岩石, 1995, 15(4): 72-77.
LI Rongqing. Rare earth element distribution and its genetic signification of calcite in Hunan polymetallic metallogenic province[J]. Journal of Mineralogy and Petrology, 1995, 15(4): 72-77.
[32] SCHMID S, WORDEN R, FISHER Q. Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland[J]. Marine and Petroleum Geology, 2004, 21(3): 299-315.
[33] XI K, CAO Y, LIN M, et al. Applications of light stable isotopes (C, O, H) in the study of sandstone diagenesis: A review[J]. Acta Geologica Sinica, 2019, 93(1): 213-226.
[34] HAYES M J, BOLES J R. Evidence for meteoric recharge in the San Joaquin Basin, California, provided by isotope and trace element geochemistry[J]. Marine and Petroleum Geology, 1993, 10(2): 135-144.
[35] KLINKHAMMER G P, ELDERFIELD H, MITRA A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113.
[36] 单祥, 郭华军, 邹志文, 等. 碱性环境成岩作用及其对储集层质量的影响: 以准噶尔盆地西北缘中—下二叠统碎屑岩储集层为例[J]. 新疆石油地质, 2018, 39(1): 55-62.
SHAN Xiang, GUO Huajun, ZOU Zhiwen, et al. Diagenesis in alkaline environment and its influences on reservoir quality: A case study of middle-lower Permian clastic reservoirs in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 55-62.
[37] 周路, 郑金云, 雷德文, 等. 准噶尔盆地车莫古隆起侏罗系剥蚀厚度恢复[J]. 古地理学报, 2007, 9(3): 243-252.
ZHOU Lu, ZHENG Jinyun, LEI Dewen, et al. Recovery of eroded thickness of the Jurassic of Chemo palaeouplift in Junggar Basin[J]. Journal of Palaeogeography, 2007, 9(3): 243-252.
[38] 周勇水, 邱楠生, 宋鑫颖, 等. 准噶尔盆地腹部超压地层烃源岩热演化史研究[J]. 地质科学, 2014, 49(3): 812-822.
ZHOU Yongshui, QIU Nansheng, SONG Xinying, et al. Study of source rock thermal evolution in over pressure formations in the hinterland of Junggar Basin[J]. Chinese Journal of Geology, 2014, 49(3): 812-822.
[39] 张义杰, 曹剑, 胡文瑄. 准噶尔盆地油气成藏期次确定与成藏组合划分[J]. 石油勘探与开发, 2010, 37(3): 257-262.
ZHANG Yijie, CAO Jian, HU Wenxuan. Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2010, 37(3): 257-262.
[40] 范存辉, 秦启荣, 秦章晋. 火山岩油气储层识别与预测: 以准噶尔盆地西北缘中拐凸起石炭系火山岩为例[M]. 北京: 科学出版社, 2016: 161-162.
FAN Cunhui, QIN Qirong, QIN Zhangjin. Volcanic rock reservoir identification and prediction: A case study of Carboniferous volcanic rocks in Zhongguai Swell in northwestern margin of Junggar Basin[M]. Beijing: Science Press, 2016: 161-162.