[1] 姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 2020, 47(3): 617-628.
JIANG Zhenxue, SONG Yan, TANG Xianglu, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 2020, 47(3): 617-628.
[2] LU Yangbo, HUANG Chunju, JIANG Shu, et al. Cyclic late Katian through Hirnantian glacioeustasy and its control of the development of the organic-rich Wufeng and Longmaxi shales, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 526: 96-109.
[3] RAHMSTORF S. Thermohaline ocean circulation[M]//ELIAS S A. Encyclopedia of quaternary sciences. Amsterdam: Elsevier, 2006.
[4] HUANG Chunju, HESSELBO S P, HINNOV L. Astrochronology of the late Jurassic Kimmeridge Clay(Dorset, England) and implications for Earth system processes[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 242-255.
[5] 李登华, 李建忠, 黄金亮, 等. 火山灰对页岩油气成藏的重要作用及其启示[J]. 天然气工业, 2014, 34(5): 56-65.
LI Denghua, LI Jianzhong, HUANG Jinliang, et al. An important role of volcanic ash in the formation of shale plays and its inspiration[J]. Natural Gas Industry, 2014, 34(5): 56-65.
[6] 吴蓝宇, 陆永潮, 蒋恕, 等. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发, 2018, 45(5): 806-816.
WU Lanyu, LU Yongchao, JIANG Shu, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45(5): 806-816.
[7] LASKAR J, ROBUTEL P, JOUTEL F. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285.
[8] LI M, OGG J, ZHANG Y, et al. Astronomical tuning of the end Permian extinction and the early Triassic Epoch of south China and Germany[J]. Earth and Planetary Science Letters, 2016, 441: 10-25.
[9] KUYPERS M M M, LOURENS L J, RIJPSTRA W I C, et al. Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2[J]. Earth and Planetary Science Letters, 2004, 228(3/4): 465-482.
[10] 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
HUANG Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.
[11] ZHANG Xi, ZHANG Tingshan, LEI Bianjun, et al. A giant sandy sediment drift in early Silurian(Telychian) and its multiple sedimentological process[J]. Marine and Petroleum Geology, 2020, 113: 104077.
[12] CRICK R, ELLWOOD B, HLADIL J, et al. Magnetostratigraphy susceptibility of the Pridolian-Lochkovian(Silurian-Devonian) GSSP(Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167(1/2): 3-100.
[13] NESTOR H, EINASTO R, MÄNNIK P. Correlation of lower-middle Llandovery sections in central and southern Estonia and sedimentation cycles of lime muds[J]. Proceedings of the Estonian Academy of Sciences Geology, 2003, 52(1): 3-27.
[14] SVENSEN H H, HAMMER Ø. Astronomically forced cyclicity in the Upper Ordovician an U-Pb ages of interlayered tephra, Oslo Region, Norway[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 150-159.
[15] YANG Shengchao, HU Wenxuan, WANG Xiaolin, et al. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China[J]. Earth and Planetary Science Letters, 2019, 518: 13-25.
[16] 梁兴, 徐政语, 张朝, 等. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J]. 石油勘探与开发, 2020, 47(1): 11-28.
LIANG Xing, XU Zhengyu, ZHANG Zhao, et al. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan province, China[J]. Petroleum Exploration and Development, 2020, 47(1): 11-28.
[17] CHERNS L, WHEELEY J R. A pre-Hirnantian(Late Ordovician) interval of global cooling: The Boda event reassessed[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251(3/4): 449-460.
[18] ZHU Haihua, ZHANG Tingshan, LIANG Xing, et al. Insight into the pore structure of Wufeng-Longmaxi black shales in the south Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1279-1291.
[19] LU Yangbo, JIANG Shu, LU Yongchao, et al. Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale, South China[J]. Marine and Petroleum Geology, 2019, 109: 22-35.
[20] CHEN Xu, RONG Jia Yu, MITCHELL C E, et al. Late Ordovician to earliest Silurian graptolite and brachiopod zonation from Yangtze Region, South China with a global correlation[J]. Geology Magazine, 2000, 137(6): 623-650.
[21] 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 352-357.
CHEN, Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 352-357.
[22] HUFF W D. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras[J]. Quaternary International, 2008, 178(1): 276-287.
[23] TUCKER R D, MCKERROW W S. Early Palaeozoic chronology: A review in light of new U-Pb zircon ages from newfoundland and Britain[J]. Canadian Journal of Earth Sciences, 1995, 32(4): 368-379.
[24] TUCKER R D, KROGH T E, ROSS R J, et al. Time-scale calibration by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and lower Silurian stratotypes of Britain[J]. Earth and Planetary Science Letters, 1990, 100(1/2/3): 51-58.
[25] MIN K, RENNE P R, HUFF W D. 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 121-134.
[26] SMITH M E, SINGER B S, SIMO T. A time like our own? Radioisotopic calibration of the Ordovician greenhouse to icehouse transition[J]. Earth and Planetary Science Letters, 2011, 311(3/4): 364-374.
[27] SU Wenbo, HE Longqing, WANG Yongbiao, et al. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China[J]. SCIENCE CHINA Erath Sciences, 2003, 46(11): 1121-1133.
[28] YAN Detian, CHEN Daizhao, WANG Qingchen, et al. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China[J]. Geology, 2010, 38(7): 599-602.
[29] METCALFE I. Late Palaeozoic and Mesozoic palaeogeography of Eastern Pangaea and Tethys[J]. Global Environments and Resources, 1994, 17: 97-111.
[30] 中华人民共和国国家质量监督检验检疫总局. 沉积岩中总有机碳的测定: GB/T 19145—2003[S]. 北京: 中国标准出版社, 2003.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. The determination of total organic carbon in sedimentary rocks: GB/T 19145—2003[S]. Beijing: China Standard Press, 2003.
[31] FEDO C M, YOUNG G M, NESBITT H W. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition[J]. Precambrian Research, 1997, 86(3/4): 201-223.
[32] YOUNG G M, NESBITT H W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. Geological Society of America Bulletin, 1999, 111(2): 264-274.
[33] FENG Lianjun, CHU Xuelei, ZHANG Qirui, et al. New evidence of deposition under a cold climate for the Xieshuihe Formation of the Nanhua System in northwestern Hunan, China[J]. Chinese Science Bulletin, 2004, 49(13): 1420-1427.
[34] YAN Detian, CHEN Daizhao, WANG Qingchen, et al. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1-2): 32-39.
[35] NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[36] NESBITT H W, YOUNG G M. Formation and diagenesis of weathering profiles[J]. Journal of Geology, 1989, 97(2): 129-147.
[37] FEDO C M, WAYNE NESBITT H, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[38] MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology, 1993, 101(2): 295-303.
[39] LI M, HINNOV L, LEE K. Acycle: Time-series analysis software for paleoclimate projects and education[J]. Computers & Geosciences, 2019, 127: 12-22.
[40] THOMSON D J. Spectrum estimation and harmonic analysis[J]. IEEE Process, 1982, 70(9): 1055-1096.
[41] BRENCHLEY P J, MARSHALL J D, CARDEN G A F, et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology, 1994, 22(4): 295-298.
[42] QING H R, VEIZER J. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4429-4442.
[43] BRENCHLEY P J, MARSHALL J D, CARDEN G A F, et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology, 1994, 22(4): 295-298.
[44] NESBITT H W, YOUNG G M. Petrogenesis of sediments in the absence of chemical weathering of abrasion and sorting on bulk composition and mineralogy[J]. Sedimentology, 1996, 43(2): 341-358.
[45] HINNOV L, HILGEN F J. Cyclostratigraphy and astrochronology[M]//GRADSTEIN F, OGG J, SCHMITZ M, et al. The geologic time scale. Amsterdam: Elsevier, 2012: 63-83.
[46] OGG J G, OGG G, GRADSTEIN F M. A Concise geologic time scales[M]. Amsterdam: Elsevier, 2016: 234-240.
[47] ZHONG Yangyang, WU Huaichun, ZHANG Yuandong, et al. Astronomical calibration of the Middle Ordovician of the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 86-89.
[48] WILLIAMS G E. Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician-Early Silurian glaciation, Canning Basin, Western Australia[J]. Earth Planet Science Letters, 1991, 103(1/2/3/4): 143-155.
[49] LOURENS L J, HILGEN F J. Long-periodic variations in the Earth's obliquity and their relation to third-order eustatic cycles and late Neogene glaciations[J]. Quaternary International, 1997, 40: 43-52.
[50] BOULILA S, GALBRUN B, MILLER K G, et al. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J]. Earth Science Reviews, 2011, 109(3/4): 94-112.
[51] FANG Q, WU H, HINNOV L A, et al. A record of astronomically forced climate change in a late Ordovician(Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341(15): 163-174.
[52] HINNOV L. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 419-475.
[53] ZACHOS J C, SHACKLETON N J, REVENAUGH J S, et al. Climate response to orbital forcing across the Oligocene-Miocene boundary[J]. Science, 2001, 292(5515): 274-278.
[54] LI Mingsong, HUANG Chunju, HINNOV Linda, et al. Obliquity-forced climate during the Early Triassic hot house in China[J]. Geology, 2016, 44(8): 623-626.
[55] 张喜. 中上扬子区晚奥陶世—早志留世天文旋回地层、底流沉积及对有机质聚集的影响[D]. 成都: 西南石油大学, 2020.
ZHANG Xi. Cyclostratigraphy and bottom current deposition and its related influence to organic-rich sediment during late Ordovician-early Silurian in the middle-upper Yangtze Area[D]. Chengdu: Southwest Petroleum University, 2020.
[56] RUDDIMAN W F. Earth's climate[M]. 2nd ed. New York: W H Freeman and Company, 2008.
[57] LIU Yang, HUANG Chunju, JAMES G. OGG, et al. Oscillations of global sea-level elevation during the Paleogene correspond to 1.2-Myr amplitude modulation of orbital obliquity cycles[J]. Earth and Planetary Science Letters. 2019, 522: 65-78.
[58] BOULILA S, GALBRUN B, MILLER K G, et al. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J]. Earth Science Reviews, 2011, 109(3/4): 94-112.
[59] CRAMPTON J S, MEYERS S R, COOPER R A, et al. Pacing of Palaeozoic macroevolutionary rates by Milankovitch grand cycles[J]. Proceedings of the National Academy of Sciences, 2018, 115(22): 5686-5691.
[60] HAQ B U, SCHUTTER S R. A chronology of Palaeozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[61] LOI A, GHIENNE J F, DABARD M P, et al. The late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section(Antiatlas, Southern Morocco)[J]. Palaeogeogr, Palaeoclimatol, Palaeoecol, 2010, 296(3/4): 332-358.
[62] TREGUER P J, ROCHA C L D L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5(1): 477-501.
[63] ALEXANDRE P, ELISE N, THIJS R A, et al. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 39-51.
[64] JACOB R L. Low frequency variability in a simulated atmosphere ocean system[D] Madison, USA: University of Wisconsin-Madison, 1997.
[65] PIPER D Z, LINK P K. An upwelling model for the Phosphoria sea: A Permian, ocean-margin sea in the northwest United States[J]. AAPG Bulletin, 2002, 86(7): 1217-1235.
[66] TALLEY L. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: Schematics and transports[J]. Oceanography, 2013, 26(1): 80-97.
[67] WANG Yuman, LI Xinjing, WANG Hao, et al. Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(4): 653-665.
[68] DUGGEN S, CROOT P, SCHACHT U, et al. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data[J]. Geophysical Research Letters, 2007, 34(1): L01612.
[69] LANGMANN B, ZAKŠEK K, HORT M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry & Physics, 2010, 10(8): 3891-3899.
[70] RIMMER S, THOMPSON J. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 215(2): 125-154.
[71] COOPER C L, SWINDLES G T, SAVOV I P, et al. Evaluating the relationship between climate change and volcanism[J]. Earth Science Reviews, 2018, 177: 238-247.
[72] HU D, LI M, ZHANG X, et al. Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction[J]. Nature Communication, 2020, 11(1): 2297.
[73] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[74] ROSS D J K, BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1/2): 1-19.