油气勘探

天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响

  • 张喜 ,
  • 张廷山 ,
  • 赵晓明 ,
  • 祝海华 ,
  • MIHAI Emilian Popa ,
  • 陈雷 ,
  • 雍锦杰 ,
  • 肖强 ,
  • 李红佼
展开
  • 1.西南石油大学地球科学与技术学院,成都 610500;
    2.布加勒斯特大学地质与地球物理系,布加勒斯特 010041,罗马尼亚
张喜(1988-),男,湖北孝感人,博士,西南石油大学在站博士后,从事石油与天然气地质研究工作。地址:四川省成都市新都区新都大道8号,西南石油大学地球科学与技术学院,邮政编码:610500。E-mail: zshell@sina.com

收稿日期: 2020-12-28

  修回日期: 2021-04-07

  网络出版日期: 2021-07-23

基金资助

国家科技重大专项(2017ZX05063002-009); 国家自然科学基金(4177021173,41972120); 中国石油-西南石油大学创新联合体科技合作项目(2020CX020000)

Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area, South China

  • ZHANG Xi ,
  • ZHANG Tingshan ,
  • ZHAO Xiaoming ,
  • ZHU Haihua ,
  • MIHAI Emilian Popa ,
  • CHEN Lei ,
  • YONG Jinjie ,
  • XIAO Qiang ,
  • LI Hongjiao
Expand
  • 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Faculty of Geology and Geophysics, University of Bucharest, Bucharest 010041, Romania

Received date: 2020-12-28

  Revised date: 2021-04-07

  Online published: 2021-07-23

摘要

基于野外露头资料,通过旋回地层学、地球化学等分析方法,运用有机碳同位素组成及化学风化指标数据序列,滤波输出记录在沉积物中的天文轨道参数,探讨天文轨道周期变化及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响。研究表明,天文轨道周期驱动下的气候变化控制不同级次海平面波动,斜率周期调制的气候变化驱动海洋温盐循环,将位于高纬度区营养物质向中低纬度区转移,温盐循环是低纬度扬子区海洋生产力的主要动力。赫南特晚期海洋生产力指标Ba/Al及Ni/Al值显示,火山活动对海洋生产力贡献有限,对有机碳保存效率有显著影响;古海洋氧化还原环境指标Th/U、V/Cr及V/(V+Ni)值显示,火山活动与古海洋含氧量有显著关系,火山活动通过调节大洋含氧量来控制有机碳的保存效率,不同地区火山活动强度的差异是有机碳差异保存的重要因素。天文轨道周期驱动的有机碳输入动力及火山活动影响有机碳保存效率,二者耦合控制中上扬子区有机碳聚集。 图10 参74

本文引用格式

张喜 , 张廷山 , 赵晓明 , 祝海华 , MIHAI Emilian Popa , 陈雷 , 雍锦杰 , 肖强 , 李红佼 . 天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响[J]. 石油勘探与开发, 2021 , 48(4) : 732 -744 . DOI: 10.11698/PED.2021.04.06

Abstract

Based on field outcrop data, the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician - Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods. δ13C and chemical index of alteration (CIA) were used to filter the astronomical orbit parameters recorded in sediments. It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales, obliquity forcing climate changes drive thermohaline circulation (THC) of the ocean, and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area. Hence, THC is the main dynamic mechanism of organic-carbon supply. The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian (E4). Paleo-ocean redox environmental indicators Th/U, V/Cr and V/(V+Ni) show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean, so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean, and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon. The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the middle-upper Yangtze region.

参考文献

[1] 姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 2020, 47(3): 617-628.
JIANG Zhenxue, SONG Yan, TANG Xianglu, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 2020, 47(3): 617-628.
[2] LU Yangbo, HUANG Chunju, JIANG Shu, et al. Cyclic late Katian through Hirnantian glacioeustasy and its control of the development of the organic-rich Wufeng and Longmaxi shales, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 526: 96-109.
[3] RAHMSTORF S. Thermohaline ocean circulation[M]//ELIAS S A. Encyclopedia of quaternary sciences. Amsterdam: Elsevier, 2006.
[4] HUANG Chunju, HESSELBO S P, HINNOV L. Astrochronology of the late Jurassic Kimmeridge Clay(Dorset, England) and implications for Earth system processes[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 242-255.
[5] 李登华, 李建忠, 黄金亮, 等. 火山灰对页岩油气成藏的重要作用及其启示[J]. 天然气工业, 2014, 34(5): 56-65.
LI Denghua, LI Jianzhong, HUANG Jinliang, et al. An important role of volcanic ash in the formation of shale plays and its inspiration[J]. Natural Gas Industry, 2014, 34(5): 56-65.
[6] 吴蓝宇, 陆永潮, 蒋恕, 等. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发, 2018, 45(5): 806-816.
WU Lanyu, LU Yongchao, JIANG Shu, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45(5): 806-816.
[7] LASKAR J, ROBUTEL P, JOUTEL F. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285.
[8] LI M, OGG J, ZHANG Y, et al. Astronomical tuning of the end Permian extinction and the early Triassic Epoch of south China and Germany[J]. Earth and Planetary Science Letters, 2016, 441: 10-25.
[9] KUYPERS M M M, LOURENS L J, RIJPSTRA W I C, et al. Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2[J]. Earth and Planetary Science Letters, 2004, 228(3/4): 465-482.
[10] 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
HUANG Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.
[11] ZHANG Xi, ZHANG Tingshan, LEI Bianjun, et al. A giant sandy sediment drift in early Silurian(Telychian) and its multiple sedimentological process[J]. Marine and Petroleum Geology, 2020, 113: 104077.
[12] CRICK R, ELLWOOD B, HLADIL J, et al. Magnetostratigraphy susceptibility of the Pridolian-Lochkovian(Silurian-Devonian) GSSP(Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167(1/2): 3-100.
[13] NESTOR H, EINASTO R, MÄNNIK P. Correlation of lower-middle Llandovery sections in central and southern Estonia and sedimentation cycles of lime muds[J]. Proceedings of the Estonian Academy of Sciences Geology, 2003, 52(1): 3-27.
[14] SVENSEN H H, HAMMER Ø. Astronomically forced cyclicity in the Upper Ordovician an U-Pb ages of interlayered tephra, Oslo Region, Norway[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 150-159.
[15] YANG Shengchao, HU Wenxuan, WANG Xiaolin, et al. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China[J]. Earth and Planetary Science Letters, 2019, 518: 13-25.
[16] 梁兴, 徐政语, 张朝, 等. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J]. 石油勘探与开发, 2020, 47(1): 11-28.
LIANG Xing, XU Zhengyu, ZHANG Zhao, et al. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan province, China[J]. Petroleum Exploration and Development, 2020, 47(1): 11-28.
[17] CHERNS L, WHEELEY J R. A pre-Hirnantian(Late Ordovician) interval of global cooling: The Boda event reassessed[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251(3/4): 449-460.
[18] ZHU Haihua, ZHANG Tingshan, LIANG Xing, et al. Insight into the pore structure of Wufeng-Longmaxi black shales in the south Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1279-1291.
[19] LU Yangbo, JIANG Shu, LU Yongchao, et al. Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale, South China[J]. Marine and Petroleum Geology, 2019, 109: 22-35.
[20] CHEN Xu, RONG Jia Yu, MITCHELL C E, et al. Late Ordovician to earliest Silurian graptolite and brachiopod zonation from Yangtze Region, South China with a global correlation[J]. Geology Magazine, 2000, 137(6): 623-650.
[21] 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 352-357.
CHEN, Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 352-357.
[22] HUFF W D. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras[J]. Quaternary International, 2008, 178(1): 276-287.
[23] TUCKER R D, MCKERROW W S. Early Palaeozoic chronology: A review in light of new U-Pb zircon ages from newfoundland and Britain[J]. Canadian Journal of Earth Sciences, 1995, 32(4): 368-379.
[24] TUCKER R D, KROGH T E, ROSS R J, et al. Time-scale calibration by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and lower Silurian stratotypes of Britain[J]. Earth and Planetary Science Letters, 1990, 100(1/2/3): 51-58.
[25] MIN K, RENNE P R, HUFF W D. 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 121-134.
[26] SMITH M E, SINGER B S, SIMO T. A time like our own? Radioisotopic calibration of the Ordovician greenhouse to icehouse transition[J]. Earth and Planetary Science Letters, 2011, 311(3/4): 364-374.
[27] SU Wenbo, HE Longqing, WANG Yongbiao, et al. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China[J]. SCIENCE CHINA Erath Sciences, 2003, 46(11): 1121-1133.
[28] YAN Detian, CHEN Daizhao, WANG Qingchen, et al. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China[J]. Geology, 2010, 38(7): 599-602.
[29] METCALFE I. Late Palaeozoic and Mesozoic palaeogeography of Eastern Pangaea and Tethys[J]. Global Environments and Resources, 1994, 17: 97-111.
[30] 中华人民共和国国家质量监督检验检疫总局. 沉积岩中总有机碳的测定: GB/T 19145—2003[S]. 北京: 中国标准出版社, 2003.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. The determination of total organic carbon in sedimentary rocks: GB/T 19145—2003[S]. Beijing: China Standard Press, 2003.
[31] FEDO C M, YOUNG G M, NESBITT H W. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition[J]. Precambrian Research, 1997, 86(3/4): 201-223.
[32] YOUNG G M, NESBITT H W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. Geological Society of America Bulletin, 1999, 111(2): 264-274.
[33] FENG Lianjun, CHU Xuelei, ZHANG Qirui, et al. New evidence of deposition under a cold climate for the Xieshuihe Formation of the Nanhua System in northwestern Hunan, China[J]. Chinese Science Bulletin, 2004, 49(13): 1420-1427.
[34] YAN Detian, CHEN Daizhao, WANG Qingchen, et al. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1-2): 32-39.
[35] NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[36] NESBITT H W, YOUNG G M. Formation and diagenesis of weathering profiles[J]. Journal of Geology, 1989, 97(2): 129-147.
[37] FEDO C M, WAYNE NESBITT H, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[38] MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology, 1993, 101(2): 295-303.
[39] LI M, HINNOV L, LEE K. Acycle: Time-series analysis software for paleoclimate projects and education[J]. Computers & Geosciences, 2019, 127: 12-22.
[40] THOMSON D J. Spectrum estimation and harmonic analysis[J]. IEEE Process, 1982, 70(9): 1055-1096.
[41] BRENCHLEY P J, MARSHALL J D, CARDEN G A F, et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology, 1994, 22(4): 295-298.
[42] QING H R, VEIZER J. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4429-4442.
[43] BRENCHLEY P J, MARSHALL J D, CARDEN G A F, et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology, 1994, 22(4): 295-298.
[44] NESBITT H W, YOUNG G M. Petrogenesis of sediments in the absence of chemical weathering of abrasion and sorting on bulk composition and mineralogy[J]. Sedimentology, 1996, 43(2): 341-358.
[45] HINNOV L, HILGEN F J. Cyclostratigraphy and astrochronology[M]//GRADSTEIN F, OGG J, SCHMITZ M, et al. The geologic time scale. Amsterdam: Elsevier, 2012: 63-83.
[46] OGG J G, OGG G, GRADSTEIN F M. A Concise geologic time scales[M]. Amsterdam: Elsevier, 2016: 234-240.
[47] ZHONG Yangyang, WU Huaichun, ZHANG Yuandong, et al. Astronomical calibration of the Middle Ordovician of the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 86-89.
[48] WILLIAMS G E. Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician-Early Silurian glaciation, Canning Basin, Western Australia[J]. Earth Planet Science Letters, 1991, 103(1/2/3/4): 143-155.
[49] LOURENS L J, HILGEN F J. Long-periodic variations in the Earth's obliquity and their relation to third-order eustatic cycles and late Neogene glaciations[J]. Quaternary International, 1997, 40: 43-52.
[50] BOULILA S, GALBRUN B, MILLER K G, et al. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J]. Earth Science Reviews, 2011, 109(3/4): 94-112.
[51] FANG Q, WU H, HINNOV L A, et al. A record of astronomically forced climate change in a late Ordovician(Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341(15): 163-174.
[52] HINNOV L. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 419-475.
[53] ZACHOS J C, SHACKLETON N J, REVENAUGH J S, et al. Climate response to orbital forcing across the Oligocene-Miocene boundary[J]. Science, 2001, 292(5515): 274-278.
[54] LI Mingsong, HUANG Chunju, HINNOV Linda, et al. Obliquity-forced climate during the Early Triassic hot house in China[J]. Geology, 2016, 44(8): 623-626.
[55] 张喜. 中上扬子区晚奥陶世—早志留世天文旋回地层、底流沉积及对有机质聚集的影响[D]. 成都: 西南石油大学, 2020.
ZHANG Xi. Cyclostratigraphy and bottom current deposition and its related influence to organic-rich sediment during late Ordovician-early Silurian in the middle-upper Yangtze Area[D]. Chengdu: Southwest Petroleum University, 2020.
[56] RUDDIMAN W F. Earth's climate[M]. 2nd ed. New York: W H Freeman and Company, 2008.
[57] LIU Yang, HUANG Chunju, JAMES G. OGG, et al. Oscillations of global sea-level elevation during the Paleogene correspond to 1.2-Myr amplitude modulation of orbital obliquity cycles[J]. Earth and Planetary Science Letters. 2019, 522: 65-78.
[58] BOULILA S, GALBRUN B, MILLER K G, et al. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J]. Earth Science Reviews, 2011, 109(3/4): 94-112.
[59] CRAMPTON J S, MEYERS S R, COOPER R A, et al. Pacing of Palaeozoic macroevolutionary rates by Milankovitch grand cycles[J]. Proceedings of the National Academy of Sciences, 2018, 115(22): 5686-5691.
[60] HAQ B U, SCHUTTER S R. A chronology of Palaeozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[61] LOI A, GHIENNE J F, DABARD M P, et al. The late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section(Antiatlas, Southern Morocco)[J]. Palaeogeogr, Palaeoclimatol, Palaeoecol, 2010, 296(3/4): 332-358.
[62] TREGUER P J, ROCHA C L D L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5(1): 477-501.
[63] ALEXANDRE P, ELISE N, THIJS R A, et al. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 39-51.
[64] JACOB R L. Low frequency variability in a simulated atmosphere ocean system[D] Madison, USA: University of Wisconsin-Madison, 1997.
[65] PIPER D Z, LINK P K. An upwelling model for the Phosphoria sea: A Permian, ocean-margin sea in the northwest United States[J]. AAPG Bulletin, 2002, 86(7): 1217-1235.
[66] TALLEY L. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: Schematics and transports[J]. Oceanography, 2013, 26(1): 80-97.
[67] WANG Yuman, LI Xinjing, WANG Hao, et al. Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(4): 653-665.
[68] DUGGEN S, CROOT P, SCHACHT U, et al. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data[J]. Geophysical Research Letters, 2007, 34(1): L01612.
[69] LANGMANN B, ZAKŠEK K, HORT M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry & Physics, 2010, 10(8): 3891-3899.
[70] RIMMER S, THOMPSON J. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 215(2): 125-154.
[71] COOPER C L, SWINDLES G T, SAVOV I P, et al. Evaluating the relationship between climate change and volcanism[J]. Earth Science Reviews, 2018, 177: 238-247.
[72] HU D, LI M, ZHANG X, et al. Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction[J]. Nature Communication, 2020, 11(1): 2297.
[73] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[74] ROSS D J K, BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1/2): 1-19.
文章导航

/