油气勘探

页岩有机质孔隙形成、保持及其连通性的控制作用

  • 腾格尔 ,
  • 卢龙飞 ,
  • 俞凌杰 ,
  • 张文涛 ,
  • 潘安阳 ,
  • 申宝剑 ,
  • 王晔 ,
  • 仰云峰 ,
  • 高志伟
展开
  • 1.中国地质调查局油气资源调查中心,北京 100083;
    2.中国石化石油勘探开发研究院无锡石油地质研究所,江苏无锡 214126;
    3.中国石油大学(北京)地球科学学院,北京 102249
腾格尔(1967-),男,蒙古族,内蒙古通辽人,博士,中国地质调查局油气资源调查中心研究员,主要从事地球化学与石油地质综合研究和实验地质研究。地址:北京市海淀区北四环中路267号奥运大厦,邮政编码:100083。E-mail: tenggeer@mail.cgs.gov.cn

收稿日期: 2020-10-19

  修回日期: 2021-04-20

  网络出版日期: 2021-07-23

基金资助

国家自然科学基金“页岩气改造-散失途径与保存条件”(41690133); 国家油气科技重大专项“重点层系页岩气生成与储集机理研究”(2017ZX05036-002)

Formation, preservation and connectivity control of organic pores in shale

  • BORJIGIN Tenger ,
  • LU Longfei ,
  • YU Lingjie ,
  • ZHANG Wentao ,
  • PAN Anyang ,
  • SHEN Baojian ,
  • WANG Ye ,
  • YANG Yunfeng ,
  • GAO Zhiwei
Expand
  • 1. Oil & Gas Resources Survey, China Geological Survey, Beijing 100083, China;
    2. Wuxi Petroleum Geology Institute, Sinopec Exploration & Production Research Institute, Wuxi 214126, China;
    3. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China

Received date: 2020-10-19

  Revised date: 2021-04-20

  Online published: 2021-07-23

摘要

针对页岩有机质孔隙发育的强非均质性及形成演化的复杂性,运用场发射扫描电镜、拉曼光谱和流体注入与CT/扫描电镜成像等实验技术,开展南方下古生界富有机质页岩显微组分、有机孔和连通性等分析,结合生排烃机制、有机质活性炭成孔机理等研究成果,探索有机孔发育与有机质类型、生烃过程、成岩作用和孔隙压力等内在联系,揭示页岩有机质孔隙的形成与保存机制及其连通性的控制因素。研究表明,①有机孔形成贯穿于生烃全过程,受制于有机质类型、成熟度和分解作用,干酪根与固体沥青的生烃组分及差异生烃演化造成不同的孔隙发育特征,有机孔主要发育于固体沥青和富氢干酪根;②有机孔保存受成熟度和成岩作用控制,包括烃类原位滞留的空间位阻效应、重结晶形成的刚性矿物格架、孔隙流体压力与页岩脆-延性转换的耦合支撑机制;③Ro值4.0%是有机孔消亡的成熟度门限值,指出Ro值大于3.5%的页岩层属于页岩气勘探高风险区,其低含气性归因于“先天不足”,烃源岩抬升前就处于开放状态,排烃效率高,芳构化强烈,使得成熟度升高,孔隙减少;④同一有机质颗粒内部孔隙具较好连通性,不同有机质孔隙及其与无机孔缝之间形成有效连通则取决于页岩有机质丰度、分布及孔缝发育程度,不同类型有机质高丰度聚集保存并呈纹层状分布是有机孔、粒缘缝和层理缝发育并连通成为有效储集层的先决条件。 图14 表3 参29

本文引用格式

腾格尔 , 卢龙飞 , 俞凌杰 , 张文涛 , 潘安阳 , 申宝剑 , 王晔 , 仰云峰 , 高志伟 . 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021 , 48(4) : 687 -699 . DOI: 10.11698/PED.2021.04.02

Abstract

In view of strong heterogeneity and complex formation and evolution of organic pores, field emission scanning electron microscopy (FESEM), Raman spectrum and fluid injection + CT/SEM imaging technology were used to study the macerals, organic pores and connectivity of organic pores in the lower Paleozoic organic-rich shale samples from Southern China. Combined with the mechanism of hydrocarbon generation and expulsion and pore forming mechanism of organic matter-based activated carbon, the relationships between organic pore development and the organic matter type, hydrocarbon generation process, diagenesis and pore pressure were explored to reveal the controlling factors of the formation, preservation and connectivity of organic pores in shale. (1) The generation of organic pores goes on through the whole hydrocarbon generation process, and is controlled by the type, maturity and decomposition of organic matter; the different hydrocarbon generation components and differential hydrocarbon-generation evolution of kerogen and solid asphalt lead to different pore development characteristics; organic pores mainly develop in solid bitumen and hydrogen-rich kerogen. (2) The preservation of organic pores is controlled by maturity and diagenesis, including the steric hindrance effect of in-situ hydrocarbon retention, rigid mineral framework formed by recrystallization, the coupling mechanism of pore-fluid pressure and shale brittleness- ductility transition. (3) The Ro of 4.0% is the maturity threshold of organic pore extinction, the shale layers with Ro larger than 3.5% have high risk for shale gas exploration, these shale layers have low gas contents, as they were in an open state before uplift, and had high hydrocarbon expulsion efficiency and strong aromatization, thus having the "congenital deficiency" of high maturity and pore densification. (4) The pores in the same organic matter particle have good connectivity; and the effective connectivity between different organic matter pores and inorganic pores and fractures depends on the abundance and distribution of organic matter, and development degree of pores and fractures in the shale; the accumulation, preservation and laminar distribution of different types of organic matter in high abundance is the prerequisite for the development and connection of organic pores, grain margin fractures and bedding fractures in reservoir.

参考文献

[1] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[2] 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-25.
ZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-25.
[3] 董晓霞, 熊亮. 川南筇竹寺组页岩储集空间类型及影响因素[J]. 物探化探计算技术, 2016, 38(3): 415-422.
DONG Xiaoxia, XIONG Liang. Microscopic space types and its influencing factors of the lower Cambrian Qiongzhusi shale, southern Sichuan Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(3): 415-422.
[4] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.
TENGER , SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
[5] 郭旭升, 胡东风, 黄仁春, 等. 四川盆地深层—超深层天然气勘探进展与展望[J]. 天然气工业, 2020, 40(5): 1-14.
GUO Xusheng, HU Dongfeng, HUANG Renchun, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect[J]. Natural Gas Industry, 2020, 40(5): 1-14.
[6] ZHANG Wentao, HU Wenxuan, TENGER , et al. Pore characteristics of different organic matter in black shale: A case study of the Wufeng-Longmaxi Formation in the Southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43.
[7] 刘若冰. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J]. 沉积学报, 2015, 33(4): 817-827.
LIU Ruobing. Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 817-827.
[8] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201.
GUO Xusheng, LI Yuping, TENGER , et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Wufeng-Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201.
[9] 何希鹏, 王运海, 王彦祺, 等. 渝东南盆缘转换带常压页岩气勘探实践[J]. 中国石油勘探, 2020, 25(1): 126-137.
HE Xipeng, WANG Yunhai, WANG Yanqi, et al. Exploration practices of normal-pressure shale gas in the marginal transition zone of the southeast Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(1): 126-137.
[10] TENGER, HU Kai, MENG Qingqiang, et al. Formation mechanism of high quality marine source rocks: Coupled control mechanism of geological environment and organism evolution[J]. Journal of Earth Science, 2011, 22(3): 326-339.
[11] WANG Ye, QIU Nansheng, TENGER , et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465.
[12] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer Verlag, 1984.
[13] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[14] 杨荣清, 吴新, 赵长遂. 石油焦燃烧过程中孔隙结构变化实验研究[J]. 东南大学学报(自然科学版), 2006, 36(1): 134-137.
YANG Rongqing, WU Xin, ZHAO Changsui. Expermi ental study on changes in pore structure of petroleum coke during combustion[J]. Journal of Southeast University (Science & Technology Edition), 2006, 36(1): 134-137.
[15] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
[16] 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30.
MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30.
[17] 肖贤明, 王茂林, 魏强, 等. 中国南方下古生界页岩气远景区评价[J]. 天然气地球科学, 2015, 26(8): 1433-1445.
XIAO Xianming, WANG Maolin, WEI Qiang, et al. Evaluation of lower Paleozoic shale with shale gas prospect in south China[J]. Natural Gas Geoscience, 2015, 26(8): 1433-1445.
[18] LIU D H, XIAO X M, TIAN H, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58: 1285-1298.
[19] 王玉满, 李新景, 陈波海, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395.
WANG Yuman, LI Xinjing, CHEN Bohai, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395.
[20] 赵文韬, 荆铁亚, 熊鑫, 等. 海相页岩有机质石墨化特征研究: 以渝东南地区牛蹄塘组为例[J]. 地质科技情报, 2018, 37(2): 183-191.
ZHAO Wentao, JING Tieya, XIONG Xin, et al. Graphitization characteristics of organic matters in marine-facies shales[J]. Geological Science and Technology Information, 2018, 37(2): 183-191.
[21] 徐壮, 石万忠, 翟刚毅, 等. 扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因[J]. 地球科学, 2017, 42(7): 1223-1234.
XU Zhuang, SHI Wanzhong, ZHAI Gangyi, et al. Relationship differences and causes between porosity and organic carbon in black shales of the lower Cambrian and the lower Silurian in Yangtze area[J]. Earth Science, 2017, 42(7): 1223-1234.
[22] KITTY L M, MARK R, DAVID N A, et al. Organic matter hosted pore system, Marecellus Formation, Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
[23] 孟志勇. 四川盆地涪陵地区五峰组—龙马溪组含气页岩段纵向非均质性及发育主控因素[J]. 石油与天然气地质, 2016, 37(6): 838-846.
MENG Zhiyong. Vertical heterogeneity and its controlling factors of the gas shale in the Wufeng-Longmaxi Fms. in Fuling Area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6): 838-846.
[24] 袁玉松, 刘俊新, 周雁. 泥页岩脆-延转化带及其在页岩气勘探中的意义[J].石油与天然气地质, 2018, 39(5): 899-906.
YUAN Yusong, LIU Junxin, ZHOU Yan. Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 2018, 39(5): 899-906.
[25] 卢贵武, 李英峰, 宋辉, 等. 石油沥青质聚沉的微观机理[J]. 石油勘探与开发, 2008, 35(1): 67-72.
LU Guiwu, LI Yingfeng, SONG Hui, et al. Micromechanism of petroleum asphaltene aggregation[J]. Petroleum Exploration and Development, 2008, 35(1): 67-72.
[26] 腾格尔, 陶成, 胡广, 等. 排烃效率对页岩气形成与富集的影响[J]. 石油实验地质, 2020, 42(3): 325-334.
TENGER, TAO Cheng, HU Guang, et al. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. Petroleum Geology & Experiment, 2020, 42(3): 325-334.
[27] 梁正中, 余天洪. 北美超压富集页岩气研究现状及勘探启示[J]. 煤炭科学技术, 2016, 44(10): 161-166.
LIANG Zhengzhong, YU Tianhong. Research status and exploration enlightenment on over pressure and enrichment shale gas in North America[J]. Coal Science and Technology, 2016, 44(10): 161-166.
[28] LIU J, REGENAUER-LIEB K. Application of percolation theory to microtomography of structured media: Percolation threshold, critical exponents, and upscaling[J]. Physical Review E, 2011, 83(1): 1-13.
[29] YU L, FAN Y, LIU K. An innovative percolation theory-based method for characterizing pore connectivity: A case study of the Wufeng-Longmaxi shales, Sichuan Basin, China[J]. Acta Geologica Sinica, 2021, in press.
文章导航

/