油气勘探

裂陷盆地断层圈闭含油气有效性综合评价——以渤海湾盆地歧口凹陷为例

  • 付晓飞 ,
  • 宋宪强 ,
  • 王海学 ,
  • 刘海涛 ,
  • 汪顺宇 ,
  • 孟令东
展开
  • 1.东北石油大学CNPC断裂控藏研究室,黑龙江大庆163318;
    2.东北石油大学“陆相页岩油气成藏及高效开发”教育部重点实验室,黑龙江大庆163318;
    3.“油气藏及地下储库完整性评价”黑龙江省重点实验室,黑龙江大庆163318;
    4.黑龙江工程学院,哈尔滨150050;
    5.中国石油勘探开发研究院,北京100083
付晓飞(1973-),男,内蒙古赤峰人,博士,东北石油大学特聘教授,主要从事断层变形、封闭性及与流体运移研究工作,地址:黑龙江省大庆市高新技术产业开发区学府街99号,东北石油大学,邮编:163318。E-mail:fuxiaofei2008@sohu.com

收稿日期: 2020-09-14

  修回日期: 2021-05-25

  网络出版日期: 2021-07-23

基金资助

国家自然科学基金面上项目“断层破坏盖层机理及封闭性定量评价”(41972157); 黑龙江省自然科学基金“复杂断裂带成因机制及断块油气藏有效性综合评价研究”(TD2019D001); 黑龙江省自然科学基金“断层分段生长定量表征及在油气勘探开发中的应用”(QC2018041); 中国石油天然气股份有限公司科技部重大课题“走滑断裂带油气地质研究与勘探潜力评价”(2019D-0706)

Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: A case study of the Qikou Sag in the Bohai Bay Basin, China

  • FU Xiaofei ,
  • SONG Xianqiang ,
  • WANG Haixue ,
  • LIU Haitao ,
  • WANG Shunyu ,
  • MENG Lingdong
Expand
  • 1. CNPC Fault Controlling Reservoir Laboratory, Northeast Petroleum University, Daqing 163318, China;
    2. Ministry of Education Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Northeast Petroleum University, Daqing 163318, China;
    3. Key Laboratory of Oil & Gas Reservoir and Underground Gas Storage Integrity Evaluation of Heilongjiang Province, Northeast Petroleum University, Daqing 163318, China;
    4. Heilongjiang Institute of Technology, Ha'erbin 150050, China;
    5. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Received date: 2020-09-14

  Revised date: 2021-05-25

  Online published: 2021-07-23

摘要

以渤海湾盆地歧口凹陷为例,基于断层分段生长历史、油藏精细解剖和地球化学示踪综合分析,建立断层圈闭含油气有效性评价体系。应用转换位移/离距和位移梯度法落实断层圈闭解释的可靠性。应用最大断距相减法恢复断层形成演化历史,进而厘定断层圈闭形成时间有效性。基于歧口凹陷歧南地区已知油藏“断层泥比率-过断层压力差”定量关系求得断层侧向封闭临界断层泥比率为20%,构建基于“断距-砂地比与烃柱高度”关系定量评价图版。基于油藏精细解剖和储集层定量荧光示踪测试结果研究古近系沙河街组一段中亚段盖层适用于泥岩涂抹系数法评价断层垂向封闭性,泥岩涂抹系数临界值为3.5;古近系东营组二段盖层适用于断接厚度法评价断层垂向封闭性,临界断接厚度为70~80 m。综合断层圈闭空间解释有效性、形成时间有效性、侧向封闭有效性、垂向封闭有效性等4个因素,建立歧口凹陷断层圈闭含油气有效性综合评价图版,是断层圈闭风险性评价的依据。 图15 表1 参52

本文引用格式

付晓飞 , 宋宪强 , 王海学 , 刘海涛 , 汪顺宇 , 孟令东 . 裂陷盆地断层圈闭含油气有效性综合评价——以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发, 2021 , 48(4) : 677 -686 . DOI: 10.11698/PED.2021.04.01

Abstract

An evaluation system of hydrocarbon-bearing availability of fault traps was established based on the comprehensive analysis of fault segment growth history, fine reservoir anatomy and geochemistry tracing, with the Qikou sag in the Bohai Bay Basin as target area. The displacement/separation transform and displacement gradient method were used to prove the interpretation reliability of fault traps. The method of maximum throw subtraction was used to recover the history of fault growth and determine the availability of the forming period of fault traps. Based on the quantitative relationship between shale gouge ratio (SGR) and cross-fault pressure difference of known reservoirs in southern Qikou sag, the critical SGR of fault lateral sealing was calculated at 20%, and the quantitative evaluation chart based on the relationship of "fault throw-sand-formation ratio and hydrocarbon column height" was constructed. Based on the results of reservoir fine anatomy and quantitative fluorescence tracing test shale smear factor (SSF) method is suitable for evaluating the vertical sealing of faults in the caprock of the middle submember of first member of Palaeogene Shahejie Formation, and the SSF critical value is 3.5. The juxtaposition thickness method is suitable for evaluating vertical sealing of faults in the caprock of the second member of Palaeogene Dongying Formation, and the critical juxtaposition thickness of fault is 70-80 m. By combining four factors, the availability of fault trap interpretation, the availability of the forming period of fault trap, the availability of fault lateral sealing and the availability of fault vertical sealing, the comprehensive evaluation chart on hydrocarbon-bearing availability of fault traps in Qikou sag has been established, which provides a reasonable basis for risk assessment of fault traps.

参考文献

[1] 贾承造, 何登发, 石昕, 等. 中国油气晚期成藏特征[J]. 中国科学:地球科学, 2006, 36(5): 412-420.
JIA Chengzao, HE Dengfa, SHI Xin, et al. Characteristics of China's oil and gas pool formation in latest geological history[J]. SCIENCE CHINA Earth Sciences, 2006, 49(9): 947-959.
[2] 赵贤正, 金凤鸣, 王权, 等. 陆相断陷盆地洼槽聚油理论及其应用: 以渤海湾盆地冀中坳陷和二连盆地为例[J]. 石油学报, 2011, 32(1): 18-24.
ZHAO Xianzheng, JIN Fengming, WANG Quan, et al. Theory of hydrocarbon accumulation in troughs within continental faulted basins and its application: A case study in Jizhong Depression and Erlian Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 18-24.
[3] 赵贤正, 周立宏, 蒲秀刚, 等. 断陷盆地洼槽聚油理论的发展与勘探实践: 以渤海湾盆地沧东凹陷古近系孔店组为例[J]. 石油勘探与开发, 2018, 45(6): 1092-1102.
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Development and exploration practice of the concept of hydrocarbon accumulation in rifted-basin troughs: A case study of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2018, 45(6): 1092-1102.
[4] 周立宏, 韩国猛, 董越崎, 等. 渤海湾盆地歧口凹陷滨海断鼻断-砂组合模式与油气成藏[J]. 石油勘探与开发, 2019, 46(5): 869-882.
ZHOU Lihong, HAN Guomeng, DONG Yueqi, et al. Fault-sand combination modes and hydrocarbon accumulation in Binhai fault nose of Qikou Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2019, 46(5): 869-882.
[5] 徐长贵, 彭靖淞, 吴庆勋, 等. 渤海湾凹陷区复杂断裂带垂向优势运移通道及油气运移模拟[J]. 石油勘探与开发, 2019, 46(4): 684-692.
XU Changgui, PENG Jingsong, WU Qingxun, et al. Vertical dominant migration channel and hydrocarbon migration in complex fault zone, Bohai Bay sag, China[J]. Petroleum Exploration and Development, 2019, 46(4): 684-692.
[6] 孙永河, 赵博, 董月霞, 等. 南堡凹陷断裂对油气运聚成藏的控制作用[J]. 石油与天然气地质, 2013, 34(4): 540-549.
SUN Yonghe, ZHAO Bo, DONG Yuexia, et al. Control of faults on hydrocarbon migration and accumulation in the Nanpu Sag[J]. Oil and Gas Geology, 2013, 34(4): 540-549.
[7] 童亨茂, 范彩伟, 孟令箭, 等. 中国东南部裂陷盆地断裂系统复杂性的表现形式及成因机制: 以南堡凹陷和涠西南凹陷为例[J].地质学报, 2018, 92(9): 1753-1765.
TONG Hengmao, FAN Caiwei, MENG Lingjian, et al. Manifestation and origin mechanism of the fault system complexity in rift basins in eastern-southern China: Case study of the Nanbu and Weixinan Sags[J]. Acta Geologica Sinica, 2018, 92(9): 1753-1765.
[8] GARTRELL A, BAILEY W R, BRINCAT M. A new model for assessing trap integrity and oil preservation risks associated with postrift fault reactivation in the Timor Sea[J]. AAPG Bulletin, 2006, 90(12): 1921-1944.
[9] LANGHI L, ZhANG Y H, GARTRELL A, et al. Evaluating hydrocarbon trap integrity during fault reactivation using geomechanical three-dimensional modeling: An example from the Timor Sea, Australia[J]. AAPG Bulletin, 2010, 94(4): 567-591.
[10] FU X F, CHEN Z, YAN B Q, et al. Analysis of main controlling factors for hydrocarbon accumulation in central rift zones of the Hailar-Tamtsag Basin using a fault-caprock dual control mode[J]. Science China Earth Sciences, 2013, 56(8): 1357-1370.
[11] FU X F, JIA R, WANG H X, et al. Quantitiative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 300-309.
[12] FU X F, YAN L Y, MENG L D, et al. Deformation mechanism and vertical sealing capacity of fault in the mudstone caprock[J]. Journal of Earth Science, 2019, 30(2): 367-375.
[13] 吕延防, 万军, 沙子萱, 等. 被断裂破坏的盖层封闭能力评价方法及其应用[J]. 地质科学, 2008, 43(1): 162-174.
LYU Yanfang, WAN Jun, SHA Zixuan, et al. Evaluation method for seal ability of cap rock destructed by faulting and its application[J]. Chinese Journal of Geology, 2008, 43(1): 162-174.
[14] 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316.
LYU Yanfang, WANG Wei, HU Xinlei, et al. Quantitative evaluation method for lateral fault sealing property[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316.
[15] 王超, 吕延防, 王权, 等. 油气跨断层侧向运移评价方法: 以渤海湾盆地冀中坳陷霸县凹陷文安斜坡史各庄鼻状构造带为例[J]. 石油勘探与开发, 2017, 44(6): 880-888.
WANG Chao, LYU Yanfang, WANG Quan, et al. Evaluation of oil and gas lateral migration across faults: A case study of Shigezhuang nose structure of Wen'an Slope in Baxian Sag, Jizhong Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(6): 880-888.
[16] INGRAM G M, URAI J L. Top-seal leakage through faults and fractures: The role of mudrock properties[J]. Geological Society, 1999, 158(1): 125-135.
[17] 孙永河, 杨文璐, 赵荣, 等. 渤南地区BZ28-2S/N油田油水分布主控因素[J]. 石油学报, 2012, 33(5): 790-797.
SUN Yonghe, YANG Wenlu, ZHAO Rong, et al. Main controlling factors of oil and water distribution in BZ28-2S /N oilfield in Bonan Area[J]. Acta Petroleum Sinica, 2012, 33(5): 790-797.
[18] 何治亮, 李双建, 沃玉进, 等. 中国海相盆地油气保存条件主控因素与评价思路[J]. 岩石学报, 2017, 33(4): 1221-1232.
HE Zhiliang, LI Shuangjian, WU Yujin, et al. Main controlling factors and evaluation ideas of oil and gas preservation conditions in marine basins of China[J]. Acta Petrographica Sinica, 2017, 33(4): 1221-1232.
[19] 薛永安. 认识创新推动渤海海域油气勘探取得新突破: 渤海海域近年主要勘探进展回顾[J]. 中国海上油气, 2018, 30(2): 1-8.
XUE Yong'an. New breakthroughs in hydrocarbon exploration in the Bohai sea area driven by understanding innovation: A review of major exploration progresses of Bohai sea area in recent years[J]. China Offshore Oil & Gas, 2018, 30(2): 1-8.
[20] SORKHABI R, TSUJI Y. The place of faults in petroleum traps[J]. AAPG Memoir, 2005, 85: 1-3.
[21] MORLEY C K, GABDI S, SEUSUTTHIYA K. Fault superimposition and linkage resulting from stress changes during rifting: Examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 2007, 29: 646-663.
[22] CARTWRIGHT J A, TRUDGILL B D, MANSFIELD C S. Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah[J]. Journal of Structural Geology, 1995, 17: 1319-1326.
[23] KIM Y S, SANDERSON D J. The relationship between displacement and length of faults: A review[J]. Earth Science Reviews, 2005, 68: 317-334.
[24] FOSSEN H. Structural geology[M]. New York: Cambridge University Press, 2010: 119-185.
[25] 王海学, 吕延防, 付晓飞, 等. 断裂质量校正及其在油气勘探开发中的作用[J]. 中国矿业大学学报, 2014, 43(3): 461-469.
WANG Haixue, LYU Yanfang, FU Xiaofei, et al. Fault quality correction and its role in the oil and gas exploration and development[J]. Journal of China University of Mining and Technology, 2014, 43(3): 461-469.
[26] 付晓飞, 孙兵, 王海学, 等. 断层分段生长定量表征及在油气成藏研究中的应用[J]. 中国矿业大学学报, 2015, 44(2): 271-281.
FU Xiaofei, SUN Bing, WANG Haixue, et al. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research[J]. Journal of China University of Mining and Technology, 2015, 44(2): 271-281.
[27] WANG H X, FU X F, LIU S R. Quantitative discrimination of normal fault segment growth and its geological significance: Example from the Tanan Depression, Tamtsag Basin, Mongolia[J]. Australian Journal of Earth Science, 2018, 65(5): 711-725.
[28] BARNETT J A, MORTIMER J, RIPPON J H, et al. Displacement geometry in the volume containing a single normal fault[J]. AAPG Bulletin, 1987, 71(3): 925-937.
[29] JACKSON A L, GAWTHORPE R L, SHAPP I R. Growth and linkage of the East Tanka fault zone, Suez rift: Structural style and syn-rift stratigraphic response[J]. Journal of the Geological Society, 2002, 159(2): 175-187.
[30] SCHOLZ C H, DAWERS N H, YU J Z, et al. Fault growth and fault scaling laws: Preliminary results[J]. Journal of Geophysical Research, 1993, 98: 21951-21961.
[31] WELLS D L, COPPERSMITH K J. New empirical relationships among magnitude rupture length, rupture width, rupture area and surface displacement[J]. Bulletin of Seismological Society of America, 1994, 84: 974-1002.
[32] CHAPMAN T J, MENEILLY A W. The displacement patterns associated with a reverse-reactivated, normal growth fault[J]. Geological Society London Special Publications, 1991, 56(1): 183-191.
[33] CHILDS C, EASTON S J, VENDEVILLE B C, et al. Kinematic analysis of faults in a physical model of growth faulting above a viscous salt analogue[J]. Tectonophysics, 1993, 228(3): 313-329.
[34] ROWAN M G, HART B S, NELSON S, et al. Three-dimensional geometry and evolution of a salt-related growth-fault array: Eugene Island 330 field, offshore Louisiana, Gulf of Mexico[J]. Marine and Petroleum Geology, 1998, 15(4): 309-328.
[35] WALSH J J, WATTERSON J. Analysis of the relationship between displacements and dimensions of faults[J]. Journal of Structural Geology, 1988, 10(3): 239-247.
[36] COWIE P A, SCHOLZ C H. Displacement-length scaling relationship for faults: Data synthesis and discussion[J]. Journal of Structural Geology, 1992, 14: 1149-1156.
[37] SOLIVA R, BENEDICTO A. A linkage criterion for segmented normal faults[J]. Journal of Structural Geology, 2004, 26: 2251-2267.
[38] ROTEVATN A, FOSSEN H. Simulating the effect of subseismic fault tails and process zones in a siliciclastic reservoir analogue: Implications for aquifer support and trap definition[J]. Marine and Petroleum Geology, 2011, 28(9): 1648-1662.
[39] 张杰, 邱楠生, 王昕, 等. 黄骅坳陷歧口凹陷热史和油气成藏史[J]. 石油与天然气地质, 2005, 26(4): 505-511.
ZHANG Jie, QIU Nansheng, WANG Xin, et al. Thermal evolution and reservoir history in Qikou sag, Huanghua Depression[J]. Oil & Gas Geology, 2005, 26(4): 505-511.
[40] 吕延防, 李国会, 王跃文, 等. 断层封闭性的定量研究方法[J]. 石油学报, 1996, 17(3): 39-45.
LYU Yanfang, LI Guohui, WANG Yuewen, et al. Quantitative analyses in fault sealing properties[J]. Acta Petrolei Sinica, 1996, 17(3): 39-45.
[41] ALLAN U S. Model for hydrocarbon migration and entrapment within faulted structures[J]. AAPG Bulletin, 1989, 73(5): 803-811.
[42] KNIPE R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 1997, 81(1): 187-195.
[43] 付晓飞, 潘国强, 贺向阳, 等. 大庆长垣南部黑帝庙浅层生物气的断层侧向封闭性[J]. 石油学报, 2009, 30(5): 678-684.
FU Xiaofei, PAN Guoqiang, HE Xiangyang, et al. Lateral sealing of faults for shallow biogas in Heidimiao Formation of thesouthern Daqing placanticline[J]. Acta Petrolei Sinica, 2009, 30(5): 678-684.
[44] 孟令东, 付晓飞, 王雅春, 等. 徐家围子断陷火山岩断层带内部结构与封闭性[J]. 石油勘探与开发, 2014, 41(2): 150-157.
MENG Lingdong, FU Xiaofei, WANG Yachun, et a1. Internal structure and sealing properties of the volcanic fault zones in Xujiaweizi Fault Depression, Songliao Basin, China[J]. Petroleum Exploration and Development, 2014, 41(2): 150-157.
[45] SIBSON R H. Implications of fault-valve behavior for rupture nucleation and recurrence[J]. Tectonophysics, 1992, 211(3): 283-293.
[46] KNIPE R J, JONES G, FISHER Q J. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: An introduction[J]. Journal of Petroleum Science & Engineering, 1998, 25(1): 93-93.
[47] YIELDING G. Shale gouge ratio: Calibration by geohistory[M]. Amsterdam: Norwegian Petroleum Society Special Publications, 2002.
[48] BRETAN P, YIELDING G, JONES H. Using calibrated shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin, 2003, 87(6): 397-413.
[49] BOLTON A, MALTMAN A. Fluid-flow pathways in actively deforming sediments: The role of pore fluid pressures and volume change[J]. Marine & Petroleum Geology, 1998, 15(4): 281-297.
[50] WELSH K E, DEARING J A, CHIVERRELL R C, et al. Testing a cellular modelling approach to simulating late-Holocene sediment and water transfer from catchment to lake in the French Alps since 1826[J]. Holocene, 2009, 19(5): 783-796.
[51] 付晓飞, 郭雪, 朱丽旭, 等. 泥岩涂抹形成演化与油气运移及封闭[J]. 中国矿业大学学报, 2012, 41(1): 52-63.
FU Xiaofei, GUO Xue, ZHU Lixu, et al. Formation and evolution of clay smear and hydrocarbon migration and sealing[J]. Journal of China University of Mining and Technology, 2012, 41(1): 52-63.
[52] LIU K, EADINGTON P, MIDDLETON H, et al. Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea[J]. Journal of Petroleum Science and Engineering, 2007, 57(1): 139-151.
文章导航

/