[1] 贾承造, 何登发, 石昕, 等. 中国油气晚期成藏特征[J]. 中国科学:地球科学, 2006, 36(5): 412-420.
JIA Chengzao, HE Dengfa, SHI Xin, et al. Characteristics of China's oil and gas pool formation in latest geological history[J]. SCIENCE CHINA Earth Sciences, 2006, 49(9): 947-959.
[2] 赵贤正, 金凤鸣, 王权, 等. 陆相断陷盆地洼槽聚油理论及其应用: 以渤海湾盆地冀中坳陷和二连盆地为例[J]. 石油学报, 2011, 32(1): 18-24.
ZHAO Xianzheng, JIN Fengming, WANG Quan, et al. Theory of hydrocarbon accumulation in troughs within continental faulted basins and its application: A case study in Jizhong Depression and Erlian Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 18-24.
[3] 赵贤正, 周立宏, 蒲秀刚, 等. 断陷盆地洼槽聚油理论的发展与勘探实践: 以渤海湾盆地沧东凹陷古近系孔店组为例[J]. 石油勘探与开发, 2018, 45(6): 1092-1102.
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Development and exploration practice of the concept of hydrocarbon accumulation in rifted-basin troughs: A case study of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2018, 45(6): 1092-1102.
[4] 周立宏, 韩国猛, 董越崎, 等. 渤海湾盆地歧口凹陷滨海断鼻断-砂组合模式与油气成藏[J]. 石油勘探与开发, 2019, 46(5): 869-882.
ZHOU Lihong, HAN Guomeng, DONG Yueqi, et al. Fault-sand combination modes and hydrocarbon accumulation in Binhai fault nose of Qikou Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2019, 46(5): 869-882.
[5] 徐长贵, 彭靖淞, 吴庆勋, 等. 渤海湾凹陷区复杂断裂带垂向优势运移通道及油气运移模拟[J]. 石油勘探与开发, 2019, 46(4): 684-692.
XU Changgui, PENG Jingsong, WU Qingxun, et al. Vertical dominant migration channel and hydrocarbon migration in complex fault zone, Bohai Bay sag, China[J]. Petroleum Exploration and Development, 2019, 46(4): 684-692.
[6] 孙永河, 赵博, 董月霞, 等. 南堡凹陷断裂对油气运聚成藏的控制作用[J]. 石油与天然气地质, 2013, 34(4): 540-549.
SUN Yonghe, ZHAO Bo, DONG Yuexia, et al. Control of faults on hydrocarbon migration and accumulation in the Nanpu Sag[J]. Oil and Gas Geology, 2013, 34(4): 540-549.
[7] 童亨茂, 范彩伟, 孟令箭, 等. 中国东南部裂陷盆地断裂系统复杂性的表现形式及成因机制: 以南堡凹陷和涠西南凹陷为例[J].地质学报, 2018, 92(9): 1753-1765.
TONG Hengmao, FAN Caiwei, MENG Lingjian, et al. Manifestation and origin mechanism of the fault system complexity in rift basins in eastern-southern China: Case study of the Nanbu and Weixinan Sags[J]. Acta Geologica Sinica, 2018, 92(9): 1753-1765.
[8] GARTRELL A, BAILEY W R, BRINCAT M. A new model for assessing trap integrity and oil preservation risks associated with postrift fault reactivation in the Timor Sea[J]. AAPG Bulletin, 2006, 90(12): 1921-1944.
[9] LANGHI L, ZhANG Y H, GARTRELL A, et al. Evaluating hydrocarbon trap integrity during fault reactivation using geomechanical three-dimensional modeling: An example from the Timor Sea, Australia[J]. AAPG Bulletin, 2010, 94(4): 567-591.
[10] FU X F, CHEN Z, YAN B Q, et al. Analysis of main controlling factors for hydrocarbon accumulation in central rift zones of the Hailar-Tamtsag Basin using a fault-caprock dual control mode[J]. Science China Earth Sciences, 2013, 56(8): 1357-1370.
[11] FU X F, JIA R, WANG H X, et al. Quantitiative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 300-309.
[12] FU X F, YAN L Y, MENG L D, et al. Deformation mechanism and vertical sealing capacity of fault in the mudstone caprock[J]. Journal of Earth Science, 2019, 30(2): 367-375.
[13] 吕延防, 万军, 沙子萱, 等. 被断裂破坏的盖层封闭能力评价方法及其应用[J]. 地质科学, 2008, 43(1): 162-174.
LYU Yanfang, WAN Jun, SHA Zixuan, et al. Evaluation method for seal ability of cap rock destructed by faulting and its application[J]. Chinese Journal of Geology, 2008, 43(1): 162-174.
[14] 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316.
LYU Yanfang, WANG Wei, HU Xinlei, et al. Quantitative evaluation method for lateral fault sealing property[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316.
[15] 王超, 吕延防, 王权, 等. 油气跨断层侧向运移评价方法: 以渤海湾盆地冀中坳陷霸县凹陷文安斜坡史各庄鼻状构造带为例[J]. 石油勘探与开发, 2017, 44(6): 880-888.
WANG Chao, LYU Yanfang, WANG Quan, et al. Evaluation of oil and gas lateral migration across faults: A case study of Shigezhuang nose structure of Wen'an Slope in Baxian Sag, Jizhong Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(6): 880-888.
[16] INGRAM G M, URAI J L. Top-seal leakage through faults and fractures: The role of mudrock properties[J]. Geological Society, 1999, 158(1): 125-135.
[17] 孙永河, 杨文璐, 赵荣, 等. 渤南地区BZ28-2S/N油田油水分布主控因素[J]. 石油学报, 2012, 33(5): 790-797.
SUN Yonghe, YANG Wenlu, ZHAO Rong, et al. Main controlling factors of oil and water distribution in BZ28-2S /N oilfield in Bonan Area[J]. Acta Petroleum Sinica, 2012, 33(5): 790-797.
[18] 何治亮, 李双建, 沃玉进, 等. 中国海相盆地油气保存条件主控因素与评价思路[J]. 岩石学报, 2017, 33(4): 1221-1232.
HE Zhiliang, LI Shuangjian, WU Yujin, et al. Main controlling factors and evaluation ideas of oil and gas preservation conditions in marine basins of China[J]. Acta Petrographica Sinica, 2017, 33(4): 1221-1232.
[19] 薛永安. 认识创新推动渤海海域油气勘探取得新突破: 渤海海域近年主要勘探进展回顾[J]. 中国海上油气, 2018, 30(2): 1-8.
XUE Yong'an. New breakthroughs in hydrocarbon exploration in the Bohai sea area driven by understanding innovation: A review of major exploration progresses of Bohai sea area in recent years[J]. China Offshore Oil & Gas, 2018, 30(2): 1-8.
[20] SORKHABI R, TSUJI Y. The place of faults in petroleum traps[J]. AAPG Memoir, 2005, 85: 1-3.
[21] MORLEY C K, GABDI S, SEUSUTTHIYA K. Fault superimposition and linkage resulting from stress changes during rifting: Examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 2007, 29: 646-663.
[22] CARTWRIGHT J A, TRUDGILL B D, MANSFIELD C S. Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah[J]. Journal of Structural Geology, 1995, 17: 1319-1326.
[23] KIM Y S, SANDERSON D J. The relationship between displacement and length of faults: A review[J]. Earth Science Reviews, 2005, 68: 317-334.
[24] FOSSEN H. Structural geology[M]. New York: Cambridge University Press, 2010: 119-185.
[25] 王海学, 吕延防, 付晓飞, 等. 断裂质量校正及其在油气勘探开发中的作用[J]. 中国矿业大学学报, 2014, 43(3): 461-469.
WANG Haixue, LYU Yanfang, FU Xiaofei, et al. Fault quality correction and its role in the oil and gas exploration and development[J]. Journal of China University of Mining and Technology, 2014, 43(3): 461-469.
[26] 付晓飞, 孙兵, 王海学, 等. 断层分段生长定量表征及在油气成藏研究中的应用[J]. 中国矿业大学学报, 2015, 44(2): 271-281.
FU Xiaofei, SUN Bing, WANG Haixue, et al. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research[J]. Journal of China University of Mining and Technology, 2015, 44(2): 271-281.
[27] WANG H X, FU X F, LIU S R. Quantitative discrimination of normal fault segment growth and its geological significance: Example from the Tanan Depression, Tamtsag Basin, Mongolia[J]. Australian Journal of Earth Science, 2018, 65(5): 711-725.
[28] BARNETT J A, MORTIMER J, RIPPON J H, et al. Displacement geometry in the volume containing a single normal fault[J]. AAPG Bulletin, 1987, 71(3): 925-937.
[29] JACKSON A L, GAWTHORPE R L, SHAPP I R. Growth and linkage of the East Tanka fault zone, Suez rift: Structural style and syn-rift stratigraphic response[J]. Journal of the Geological Society, 2002, 159(2): 175-187.
[30] SCHOLZ C H, DAWERS N H, YU J Z, et al. Fault growth and fault scaling laws: Preliminary results[J]. Journal of Geophysical Research, 1993, 98: 21951-21961.
[31] WELLS D L, COPPERSMITH K J. New empirical relationships among magnitude rupture length, rupture width, rupture area and surface displacement[J]. Bulletin of Seismological Society of America, 1994, 84: 974-1002.
[32] CHAPMAN T J, MENEILLY A W. The displacement patterns associated with a reverse-reactivated, normal growth fault[J]. Geological Society London Special Publications, 1991, 56(1): 183-191.
[33] CHILDS C, EASTON S J, VENDEVILLE B C, et al. Kinematic analysis of faults in a physical model of growth faulting above a viscous salt analogue[J]. Tectonophysics, 1993, 228(3): 313-329.
[34] ROWAN M G, HART B S, NELSON S, et al. Three-dimensional geometry and evolution of a salt-related growth-fault array: Eugene Island 330 field, offshore Louisiana, Gulf of Mexico[J]. Marine and Petroleum Geology, 1998, 15(4): 309-328.
[35] WALSH J J, WATTERSON J. Analysis of the relationship between displacements and dimensions of faults[J]. Journal of Structural Geology, 1988, 10(3): 239-247.
[36] COWIE P A, SCHOLZ C H. Displacement-length scaling relationship for faults: Data synthesis and discussion[J]. Journal of Structural Geology, 1992, 14: 1149-1156.
[37] SOLIVA R, BENEDICTO A. A linkage criterion for segmented normal faults[J]. Journal of Structural Geology, 2004, 26: 2251-2267.
[38] ROTEVATN A, FOSSEN H. Simulating the effect of subseismic fault tails and process zones in a siliciclastic reservoir analogue: Implications for aquifer support and trap definition[J]. Marine and Petroleum Geology, 2011, 28(9): 1648-1662.
[39] 张杰, 邱楠生, 王昕, 等. 黄骅坳陷歧口凹陷热史和油气成藏史[J]. 石油与天然气地质, 2005, 26(4): 505-511.
ZHANG Jie, QIU Nansheng, WANG Xin, et al. Thermal evolution and reservoir history in Qikou sag, Huanghua Depression[J]. Oil & Gas Geology, 2005, 26(4): 505-511.
[40] 吕延防, 李国会, 王跃文, 等. 断层封闭性的定量研究方法[J]. 石油学报, 1996, 17(3): 39-45.
LYU Yanfang, LI Guohui, WANG Yuewen, et al. Quantitative analyses in fault sealing properties[J]. Acta Petrolei Sinica, 1996, 17(3): 39-45.
[41] ALLAN U S. Model for hydrocarbon migration and entrapment within faulted structures[J]. AAPG Bulletin, 1989, 73(5): 803-811.
[42] KNIPE R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 1997, 81(1): 187-195.
[43] 付晓飞, 潘国强, 贺向阳, 等. 大庆长垣南部黑帝庙浅层生物气的断层侧向封闭性[J]. 石油学报, 2009, 30(5): 678-684.
FU Xiaofei, PAN Guoqiang, HE Xiangyang, et al. Lateral sealing of faults for shallow biogas in Heidimiao Formation of thesouthern Daqing placanticline[J]. Acta Petrolei Sinica, 2009, 30(5): 678-684.
[44] 孟令东, 付晓飞, 王雅春, 等. 徐家围子断陷火山岩断层带内部结构与封闭性[J]. 石油勘探与开发, 2014, 41(2): 150-157.
MENG Lingdong, FU Xiaofei, WANG Yachun, et a1. Internal structure and sealing properties of the volcanic fault zones in Xujiaweizi Fault Depression, Songliao Basin, China[J]. Petroleum Exploration and Development, 2014, 41(2): 150-157.
[45] SIBSON R H. Implications of fault-valve behavior for rupture nucleation and recurrence[J]. Tectonophysics, 1992, 211(3): 283-293.
[46] KNIPE R J, JONES G, FISHER Q J. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: An introduction[J]. Journal of Petroleum Science & Engineering, 1998, 25(1): 93-93.
[47] YIELDING G. Shale gouge ratio: Calibration by geohistory[M]. Amsterdam: Norwegian Petroleum Society Special Publications, 2002.
[48] BRETAN P, YIELDING G, JONES H. Using calibrated shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin, 2003, 87(6): 397-413.
[49] BOLTON A, MALTMAN A. Fluid-flow pathways in actively deforming sediments: The role of pore fluid pressures and volume change[J]. Marine & Petroleum Geology, 1998, 15(4): 281-297.
[50] WELSH K E, DEARING J A, CHIVERRELL R C, et al. Testing a cellular modelling approach to simulating late-Holocene sediment and water transfer from catchment to lake in the French Alps since 1826[J]. Holocene, 2009, 19(5): 783-796.
[51] 付晓飞, 郭雪, 朱丽旭, 等. 泥岩涂抹形成演化与油气运移及封闭[J]. 中国矿业大学学报, 2012, 41(1): 52-63.
FU Xiaofei, GUO Xue, ZHU Lixu, et al. Formation and evolution of clay smear and hydrocarbon migration and sealing[J]. Journal of China University of Mining and Technology, 2012, 41(1): 52-63.
[52] LIU K, EADINGTON P, MIDDLETON H, et al. Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea[J]. Journal of Petroleum Science and Engineering, 2007, 57(1): 139-151.