石油工程

裂缝性恶性井漏地层堵漏技术研究进展与展望

  • 孙金声 ,
  • 白英睿 ,
  • 程荣超 ,
  • 吕开河 ,
  • 刘凡 ,
  • 冯杰 ,
  • 雷少飞 ,
  • 张洁 ,
  • 郝惠军
展开
  • 1.中国石油大学(华东)石油工程学院,山东青岛 266580;
    2.中国石油集团工程技术研究院有限公司,北京 102206
孙金声(1965-),男,江西于都人,博士,中国工程院院士,主要从事钻井液、储集层保护、天然气水合物钻采理论与技术等方面的研究工作。地址:北京市昌平区黄河街5号院1号楼,邮政编码:102206。E-mail: sunjinsheng@petrochina.com.cn

收稿日期: 2020-07-27

  网络出版日期: 2021-05-21

基金资助

国家自然科学基金重大项目课题“井筒工作液与天然气水合物储层作用机理和调控方法”(51991361); 国家自然科学基金面上项目“深层裂缝性地层剪切响应型凝胶体系构筑与空间自适应堵漏机理”(52074327); 国家自然科学基金-石油化工联合基金(A类)重点基金项目“超深井安全高效井筒工作液构建及调控方法基础研究”(U1762212); 中国石油天然气集团有限公司重大工程技术现场试验项目“恶性井漏防治技术与高性能水基钻井液现场试验”(2020F-45)

Research progress and prospect of plugging technologies for fractured formation with severe lost circulation

  • SUN Jinsheng ,
  • BAI Yingrui ,
  • CHENG Rongchao ,
  • LYU Kaihe ,
  • LIU Fan ,
  • FENG Jie ,
  • LEI Shaofei ,
  • ZHANG Jie ,
  • HAO Huijun
Expand
  • 1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
    2. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China

Received date: 2020-07-27

  Online published: 2021-05-21

摘要

通过系统论述裂缝性地层钻井液漏失和堵漏机理,对不同类型堵漏材料及其在裂缝性恶性漏失地层中的适用性及作用机理进行了分类归纳,同时基于所用堵漏材料分析了不同类型堵漏工艺的优缺点及应用效果,明确了目前国内外恶性漏失地层堵漏技术存在的关键问题,进而提出未来恶性井漏堵漏技术发展方向。未来应综合地质、工程、材料等学科,实现恶性井漏堵漏技术的一体化、智能化与系统化,重点应开展5个方面的研究:①注重钻井液漏失和堵漏机理研究,为科学选择堵漏材料及配方、堵漏方法和工艺提供依据;②注重自适应堵漏材料研发,提高堵漏材料与裂缝漏失通道级配关系;③注重三维裂缝空间强驻留强充填堵漏材料研发,增强堵漏材料在漏失通道中的驻留和充填程度,改善封堵效果;④注重抗高温堵漏材料研发,保证深层高温漏失地层的长期封堵效果;⑤注重发展数据化和智能化堵漏技术,促进堵漏技术向数据化和智能化方向发展。表1参40

本文引用格式

孙金声 , 白英睿 , 程荣超 , 吕开河 , 刘凡 , 冯杰 , 雷少飞 , 张洁 , 郝惠军 . 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021 , 48(3) : 630 -638 . DOI: 10.11698/PED.2021.03.18

Abstract

By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on: (1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes; (2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales; (3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect; (4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations; (5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.

参考文献

[1] 王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源, 2014, 19(1): 39-48.
WANG Zhonghua. The status and development direction of plugging technology for complex formation lost circulation[J]. Sino-Global Energy, 2014, 19(1): 39-48.
[2] 孙金声, 张希文. 钻井液技术的现状、挑战、需求与发展趋势[J]. 钻井液与完井液, 2011, 28(6): 67-76.
SUN Jinsheng, ZHANG Xiwen. Situations, challenges, demands and trends of drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2011, 28(6): 67-76.
[3] 许成元, 闫霄鹏, 康毅力, 等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2): 399-408.
XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399-408.
[4] FENG Y, GRAY K E. Lost circulation and wellbore strengthening[M]. Switzerland: Springer, 2018.
[5] FIDAN E, BABADAGLI T, KURU E. Use of cement as lost circulation material-field case studies[R]. SPE 88005-MS, 2004.
[6] LAVROV A. Lost circulation: Mechanisms and solutions[M]. London: Gulf Professional Publishing, 2016.
[7] 许明标, 赵明琨, 侯珊珊, 等. 油基桥架堵漏剂的研究与应用[J]. 断块油气田, 2018, 25(6): 799-802.
XU Mingbiao, ZHAO Mingkun, HOU Shanshan, et al. Research and application of oil-based bridge plugging agent[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 799-802.
[8] 苏晓明, 练章华, 方俊伟, 等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发, 2019, 46(1): 165-172.
SU Xiaoming, LIAN Zhanghua, FANG Junwei, et al. Lost circulation material for abnormally high temperature and pressure fractured-vuggy carbonate reservoirs in Tazhong block, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 165-172.
[9] ZHAI X, CHEN H, LOU Y, et al. Prediction and control model of shale induced fracture leakage pressure[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108186.
[10] 李大奇, 刘四海, 康毅力, 等. 天然裂缝性地层钻井液漏失规律研究[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 101-106.
LI Daqi, LIU Sihai, KANG Yili, et al. Dynamic behavior of drilling fluid leakage in naturally fractured formations[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2016, 38(3): 101-106.
[11] WANG M, GUO Y, CHEN W. Effect of solid particles on the lost circulation of drilling fluid: A numerical simulation[J]. Powder Technology, 2020, 363: 408-418.
[12] 贾利春, 陈勉, 侯冰, 等. 裂缝性地层钻井液漏失模型及漏失规律[J]. 石油勘探与开发, 2014, 41(1): 95-101.
JIA Lichun, CHEN Mian, HOU Bing, et al. Drilling fluid loss model and loss dynamic behavior in fractured formations[J]. Petroleum Exploration and Development, 2014, 41(1): 95-101.
[13] RAZAVI O, LEE H P, OLSON J E, et al. Drilling mud loss in naturally fractured reservoirs: Theoretical modelling and field data analysis[R]. SPE 187265, 2017.
[14] SABAH M, TALEBKEIKHAH M, AGIN F, et al. Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field[J]. Journal of Petroleum Science and Engineering, 2019, 177: 236-249.
[15] FENG Y, GRAY K E. Modeling lost circulation through drilling-induced fractures[J]. SPE Journal, 2018, 23(1): 205-223.
[16] ASTON M S, ALBERTY M W, MCLEAN M R, et al. Drilling fluids for wellbore strengthening[R]. SPE 87130, 2004.
[17] MEHRABIAN A, JAMISON D E, TEODORESCU S G. Geomechanics of lost-circulation events and wellbore-strengthening operations[R]. SPE 174088, 2015.
[18] VAN O E, RAZAVI O S. Wellbore strengthening and casing smear: the common underlying mechanism[R]. SPE 168041-MS, 2014.
[19] LOLOI M, ZAKI K S, ZHAI Z, et al. Borehole strengthening and injector plugging-the common geomechanics thread[R]. SPE 128589-MS, 2010.
[20] 康毅力, 许成元, 唐龙, 等. 构筑井周坚韧屏障: 井漏控制理论与方法[J]. 石油勘探与开发, 2014, 41(4): 473-479.
KANG Yili, XU Chengyuan, TANG Long, et al. Constructing a tough shield around the wellbore: Theory and method for lost-circulation control[J]. Petroleum Exploration and Development, 2014, 41(4): 473-479.
[21] AMANULLAH M. Characteristics, behavior and performance of arc plug: A date seed-based sized particulate LCM[R]. SPE 182840-MS 2016.
[22] 康毅力, 余海峰, 许成元, 等. 毫米级宽度裂缝封堵层优化设计[J]. 天然气工业, 2014, 34(11): 88-94.
KANG Yili, YU Haifeng, XU Chengyuan, et al. An optimal design for millimeter-wide fracture-plugged zones[J]. Natural Gas Industry, 2014, 34(11): 88-94.
[23] 侯士立, 刘光艳, 黄达全, 等. 高滤失承压堵漏技术[J]. 钻井液与完井液, 2018, 35(1): 53-56.
HOU Shili, LIU Guangyan, HUANG Daquan, et al. Lost circulation control with high filtration lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 53-56.
[24] 王平全, 白杨, 苗娟, 等. 钻井过程中吸水树脂型堵漏剂的研制与性能评价[J]. 钻采工艺, 2013, 36(1): 76-80.
WANG Pingquan, BAI Yang, MIAO Juan, et al. Preparation and evaluation of absorbent resin sealing agent PQ[J]. Drilling & Production Technology, 2013, 36(1): 76-80.
[25] 刘文堂, 郭建华, 李午辰, 等. 球状凝胶复合封堵剂的研制与应用[J]. 石油钻探技术, 2016, 44(2): 34-39.
LIU Wentang, GUO Jianhua, LI Wuchen, et al. The development and application of a microsphere gel composite plugging agents[J]. Petroleum Drilling Techniques, 2016, 44(2): 34-39.
[26] HASHMAT M D, SULTAN A S, RAHMAN S, et al. Flowing gels for loss circulation prevention[R]. SPE 188103-MS, 2017.
[27] 聂勋勇, 王平全, 罗平亚. 用于钻井堵漏的特种凝胶屈服应力研究[J]. 天然气工业, 2010, 30(3): 80-82.
NIE Xunyong, WANG Pingquan, LUO Pingya. A study of the yield stress of a viscoelastic gel applied in severe lost circulation control[J]. Natural Gas Industry, 2010, 30(3): 80-82.
[28] IVAN C D, BRUTON J R, MARC T, et al. Making a case for rethinking lost circulation treatments in induced fractures[R]. SPE 77353-MS, 2002.
[29] SWEATMAN R, WANG H, XENAKIS H. Wellbore stabilization increases fracture gradients and controls losses/flows during drilling[R]. SPE 88701-MS, 2004.
[30] 赵启阳. 一种可固化堵漏工作液体系的研究[D]. 成都: 西南石油大学, 2012.
ZHAO Qiyang. Study on a curable plugging working fluid system[D]. Chengdu: Southwest Petroleum University, 2012.
[31] 孙金声, 雷少飞, 白英睿, 等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 100-110.
SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Research progress and application prospects of smart materials in lost circulation control of drilling fluids[J]. Journal of China University of Petroleum (Natural Science Edition), 2020, 44(4): 100-110.
[32] 宋波凯, 谢建安, 阮彪, 等. 中拐-玛南地区钻井液体系优化与防漏堵漏技术研究[J]. 当代化工, 2019, 48(1): 135-140.
SONG Bokai, XIE Jian’an, RUAN Biao, et al. Research on optimization of drilling fluid system and loss prevention and control technology in Zhongguai-Manan region[J]. Contemporary Chemical Industry, 2019, 48(1): 135-140.
[33] 张沛元. “逐级渐进法”桥接堵漏工艺[J]. 钻井液与完井液, 2010, 27(2): 67-69.
ZHANG Peiyuan. Progressive bridge plugging technology for lost circulation[J]. Drilling Fluid and Completion Fluid, 2010, 27(2): 67-69.
[34] 王平全, 李再钧, 聂勋勇, 等. 用于钻井堵漏和封堵的特种凝胶抗冲稀性能[J]. 石油学报, 2012, 33(4): 697-701.
WANG Pingquan, LI Zaijun, NIE Xunyong, et al. Anti-dilution properties of a special gel applied to loss circulation control in drilling[J]. Acta Petrolei Sinica, 2012, 33(4): 697-701.
[35] LECOLIER E, HERZHAFT B, ROUSSEAU L, et al. Development of a nanocomposite gel for lost circulation treatment[R]. SPE 94686-MS, 2005.
[36] 杨仲涵, 罗鸣, 陈江华, 等. 莺歌海盆地超高温高压井挤水泥承压堵漏技术[J]. 石油钻探技术, 2020, 48(3): 47-51.
YANG Zhonghan, LUO Ming, CHEN Jianghua, et al. Cement squeezing for pressure-bearing plugging in ultra-high temperature and high pressure wells in the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(3): 47-51.
[37] 刘金华, 刘四海, 龙大清, 等. 明1井交联成膜与化学固结承压堵漏技术[J]. 石油钻探技术, 2017, 45(2): 54-60.
LIU Jinhua, LIU Sihai, LONG Daqing, et al. Strengthening plugging operations by combining cross-linked film and chemical consolidation in well Ming-1[J]. Petroleum Drilling Techniques, 2017, 45(2): 54-60.
[38] 韩成, 罗鸣, 杨玉豪, 等. 莺琼盆地高温高压窄安全密度窗口钻井关键技术[J]. 石油钻采工艺, 2019, 41(5): 568-572.
HAN Cheng, LUO Ming, YANG Yuhao, et al. Key drilling technologies for HTHP wells with narrow safety density window in the Yingqiong Basin[J]. Oil Drilling and Production Technology, 2019, 41(5): 568-572.
[39] 刘鹏. 膨胀波纹管封隔定向井段应用技术研究[D]. 北京: 中国地质大学(北京), 2017.
LIU Peng. Research and application of solid expandable profile liner in directional well section[D]. Beijing: China University of Geosciences (Beijing), 2017.
[40] 池胜高, 代琼曦, 张策, 等. 国外多次激活旁通阀技术现状[J]. 石油机械, 2015, 43(10): 30-33, 41.
CHI Shenggao, DAI Qiongxi, ZHANG Ce, et al. Current technical status of foreign multiple activation bypass valve[J]. China Petroleum Machinery, 2015, 43(10): 30-33, 41.
文章导航

/