油气勘探

苏门答腊斜向俯冲系统中前弧高地和盆地的发育

  • MUKTI Maruf M ,
  • MAULIN Hade B ,
  • PERMANA Haryadi
展开
  • 1.印度尼西亚科学院地球技术学系,万隆 40135,印度尼西亚;
    2.Pertamina Hulu Energi Ogan Komering有限公司,雅加达 12520,印度尼西亚
MUKTI M Maruf(1978-),男,印度尼西亚人,博士,印度尼西亚科学院研究员,主要从事地质沉积及板块方面研究。地址:Geotechnology, Indonesian Institute of Sciences (LIPI) Komplet LIPI, Gedung 70 Jalan Sangkuriang, Bandung 40135, Indonesian. E-mail: maruf.mukti@gmail.com

收稿日期: 2020-11-24

  网络出版日期: 2021-05-21

Growth of forearc highs and basins in the oblique Sumatra subduction system

  • MUKTI Maruf M ,
  • MAULIN Hade B ,
  • PERMANA Haryadi
Expand
  • 1. Geotechnology, Indonesian Institute of Sciences, Bandung 40135, Indonesia;
    2. Pertamina Hulu Energi Ogan Komering, Jakarta 12520, Indonesia

Received date: 2020-11-24

  Online published: 2021-05-21

摘要

通过对苏门答腊弧前斜向俯冲系统构造变形作用进行分析,对苏门答腊斜向俯冲系统中弧前高地的隆起机制和弧前盆地的形成进行分析。研究表明,苏门答腊弧前高地的发育归因于以下过程:挠曲抬升,盆地倒转,较老增生楔形隆起以及增生楔向陆边缘的反冲。最新的地震反射资料表明,向沟槽发散的逆冲断层和向弧发散的逆冲断层之间的相互作用在弧前高地隆起过程中起到了重要作用,弧前高地隆起的沉积物是先前在弧前盆地中形成的;弧前高地和弧前盆地的现今形态与上新世增生楔和上覆弧前盆地沉积物的隆升有关。不论俯冲系统的倾斜度是多少,苏门答腊弧前区域都以挤压作用为主,这在形成新近纪平行于沟槽的盆地沉积中心起着重要作用。图10参55

本文引用格式

MUKTI Maruf M , MAULIN Hade B , PERMANA Haryadi . 苏门答腊斜向俯冲系统中前弧高地和盆地的发育[J]. 石油勘探与开发, 2021 , 48(3) : 586 -594 . DOI: 10.11698/PED.2021.03.13

Abstract

By analyzing the structure deformation of the oblique Sumatra subduction system, the uplift mechanisms of forearc high and the formation of the forearc basin in this system are studied. The development of the forearc high is attributed to the flexing and uplifting, basin reversal, and the uplifting of the older accretion wedge and the backthrust of the accretion wedge toward the continental margin. The latest seismic reflection data shows that the interplay between trenchward-vergent thrusts and arcward-vergent thrusts has played a major role in the uplift of forearc high. The uplifted sediments on the forearc high were previously formed in a forearc basin environment. The present-day morphology of the forearc high and forearc basin is related to the uplift of the accretionary wedge and the overlying forearc basin sediments in Pliocene. Regardless of obliquity in the subduction system, the Sumatran forearc region is dominated by compression that plays an important role in forming Neogene basin depocenters that elongated parallel to the trench.

参考文献

[1] FITCH T J. Plate convergence, transcurrent faults, and internal deformation adjacent to Souheast Asia and the western Pacific[J]. Journal of Geophysical Research, 1972, 77(23): 4432-4460.
[2] MCCAFFREY R. Oblique plate convergence, slip vectors, and forearc deformation[J]. Journal of Geophysical Research, 1992, 97(B6): 8905-8915.
[3] CHEMENDA A, LALLEMAND S, BOKUN A. Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modeling[J]. Journal of Geophysical Research, 2000, 105(B3): 5567-5581.
[4] DOMINGUEZ S, LALLEMAND S, MALAVIEILLE J, et al. Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments[J]. Marine Geophysical Research, 1998, 20(5): 383-402.
[5] DIAMENT M, HARJONO H, KARTA K, et al. Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia[J]. Geology, 1992, 20(3): 259-262.
[6] IZART A, KEMAL B M, MALOD J A. Seismic stratigraphy and subsidence evolution of the northwest Sumatra fore-arc basin[J]. Marine Geology, 1994, 122(1/2): 109-124.
[7] MALOD J A, KEMAL B M. The Sumatra margin: Oblique subduction and lateral displacement of the accretionary prism[J]. Geological Society Special Publication, 1996, 106(1): 19-28.
[8] MARTIN K M, GULICK S P S, AUSTIN Jr. J A, et al. The West Andaman Fault: A complex strain-partitioning boundary at the seaward edge of the Aceh Basin, offshore Sumatra[J]. Tectonics, 2014, 33(5): 786-806.
[9] CHAUHAN A P S, SINGH S C, HANANTO N D, et al. Seismic imaging of forearc backthrusts at northern Sumatra subduction zone[J]. Geophysical Journal International, 2009, 179(3): 1772-1780.
[10] MOEREMANS R E, SINGH S C. Fore-arc basin deformation in the Andaman-Nicobar segment of the Sumatra-Andaman subduction zone: Insight from high-resolution seismic reflection data[J]. Tectonics, 2015, 34(8): 1736-1750.
[11] MUKTI M M, SINGH S C, DEIGHTON I, et al. Structural evolution of backthrusting in the Mentawai Fault Zone, offshore Sumatran forearc[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12): 1-21.
[12] SAMUEL M A, HARBURY N A, JONES M, et al. Inversion-controlled uplift of an outer-arc ridge: Nias Island, offshore Sumatra[J]. Geological Society Special Publication, 1995, 88(1): 473-492.
[13] KARIG D E, SUPARKA S, MOORE G F, et al. Structure and Cenozoic evolution of the Sunda Arc in the Central Sumatra region[J]. AAPG, 1979, 29: 223-237.
[14] SCHLÜTER H U, GAEDICKE C, ROESER H A, et al. Tectonic features of the southern Sumatra-western Java forearc of Indonesia[J]. Tectonics, 2002, 21(5): 1-15.
[15] SIEH K, NATAWIDJAJA D H. Neotectonics of the Sumatran Fault, Indonesia[J]. Journal of Geophysical Research, 2000, 105(B12): 295-298,326.
[16] JACOB J, DYMENT J, YATHEESH V. Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia[J]. Journal of Geophysical Research, 2014, 119(1): 169-190.
[17] MUKTI M M. Structural style and depositional history of the Semangko pull-apart basin in the southeastern segment of Sumatra Fault Zone[J]. Riset Geologi dan Pertambangan, 2018, 28(1): 115-128.
[18] BRIGGS R W, SIEH K, MELTZNER A J, et al. Deformation and slip along the Sunda megathrust in the great 2005 Nias-Simeulue earthquake[J]. Science, 2006, 5769(311): 1897-1901.
[19] SINGH S C, HANANTO N, MUKTI M, et al. Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra[J]. Nature Geoscience, 2011, 4(5): 308-311.
[20] BERGLAR K, GAEDICKE C, FRANKE D, et al. Structural evolution and strike-slip tectonics off north-western Sumatra[J]. Tectonophysics, 2010, 480(1/2/3/4): 119-132.
[21] BERGLAR K, GAEDICKE C, LADAGE S, et al. The Mentawai forearc sliver off Sumatra: A model for a strike-slip duplex at a regional scale[J]. Tectonophysics, 2017, 710/711: 225-231.
[22] KARIG D E, LAWRENCE M B, MOORE G F, et al. Structural framework of the fore-arc basin, NW Sumatra[J]. Journal of the Geological Society, 1980, 137(1): 77-91.
[23] MOORE G F, KARIG D E. Structural geology of Nias Island, Indonesia: Implications for subduction zone tectonics[J]. American Journal of Science, 1980, 280(3): 193-223.
[24] SINGH S C, HANANTO N D, CHAUHAN A P S, et al. Evidence of active backthrusting at the NE Margin of Mentawai Islands, SW Sumatra[J]. Geophysical Journal International, 2010, 180(2): 703-714.
[25] MATSON R G, MOORE G F. Structural influences on Neogene subsidence in the central Sumatra fore-arc basin[R]. Houston: BP Exploration, 1992: 157-181.
[26] HALL D, DUFF B, COURBE M, et al. The southern fore-arc zone of Sumatra: Cainozoic basin-forming tectonism and hydrocarbon potential[R]. Jakarta: Indonesian Petroleum Association, 1993: 319-344.
[27] SAPIIE B, YULIAN F, CHANDRA J, et al. Geology and tectonic evolution of fore-arc basins: Implications of future hydrocarbon potential in the western Indonesia[R]. Jakarta: Indonesian Petroleum Association, 2015: 1-14.
[28] YULIHANTO B, WIYANTO B. Hydrocarbon potential of the Mentawai forearc basin west Sumatra[R]. Jakarta: Indonesian Petroleum Association, 1999: 1-7.
[29] SINGH S C, MOEREMANS R, MCARDLE J, et al. Seismic images of the sliver strike-slip fault and back thrust in the Andaman-Nicobar region[J]. Journal of Geophysical Research, 2013, 118(10): 5208-5224.
[30] CURRAY J R. Tectonics and history of the Andaman Sea region[J]. Journal of Asian Earth Sciences, 2005, 25(1): 187-232.
[31] SUSILOHADI S, GAEDICKE C, DJAJADIHARDJA Y. Structures and sedimentary deposition in the Sunda Strait, Indonesia[J]. Tectonophysics, 2009, 467(1/2/3/4): 55-71.
[32] KOPP H, KUKOWSKI N. Backstop geometry and accretionary mechanics of the Sunda margin[J]. Tectonics, 2003, 22(6): 1-16.
[33] NATAWIDJAJA D H, TRIYOSO W. The Sumatran fault zone: From source to hazard[J]. Journal of Earthquake and Tsunami, 2007, 1(1): 21-47.
[34] ANDI MANGGA S, BURHAN G, SUKARDI, et al. Geological map of the Siberut sheet, Sumatera[R]. Bandung: Geological Research and Development Center, 1994.
[35] BUDHITRISNA T, ANDI MANGGA S. Geological map of the Pagai and Sipora quadrangle, Sumatra[R]. Bandung: Geological Research and Development Center, 1990.
[36] DJAMAL B, GUNAWAN W, SIMANDJUNTAK T O. Laporan geologi Lembar Nias, Sumatera[R]. Bandung: Geological Research and Development Center, 1991.
[37] ENDHARTO M, SUKIDO. Geological map of the Sinabang quadrangle, Sumatra[R]. Bandung: Geological Research and Development Center, 1994.
[38] HARDY S, MCCLAY K, MUÑOZ J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges[J]. Marine and Petroleum Geology, 2009, 26(2): 232-248.
[39] LARROQUE C, CALASSOU S, MALAVIEILLE J, et al. Experimental modelling of forearc basin development during accretionary wedge growth[J]. Basin Research, 1995, 7(3): 255-268.
[40] MCCLAY K R, WHITEHOUSE P S, DOOLEY T, et al. 3D evolution of fold and thrust belts formed by oblique convergence[J]. Marine and Petroleum Geology, 2004, 21(7): 857-877.
[41] STORTI F, SALVINI F, MCCLAY K. Synchronous and velocity- partitioned thrusting and thrust polarity reversal in experimentally produced, doubly-vergent thrust wedges: Implications for natural orogens[J]. Tectonics, 2000, 19(2): 378-396.
[42] BEAUDRY D, MOORE G F. Seismic stratigraphy and Cenozoic evolution of west Sumatra forearc basin[J]. AAPG Bulletin, 1985, 69(5): 742-759.
[43] BERGLAR K, GAEDICKE C, LUTZ R, et al. Neogene subsidence and stratigraphy of the Simeulue forearc basin, Northwest Sumatra[J]. Marine Geology, 2008, 253(1/2): 1-13.
[44] HOWLES A C. Structural and stratigraphic evolution of the southwest Sumatran Bengkulu shelf[R]. Jakarta: Indonesian Petroleum Association, 1986.
[45] HALL R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570/571: 1-41.
[46] YULIHANTO B, SOFYAN S, WIDJAJA S, et al. Post convention field trip 1996 Bengkulu Forearc Basin[R]. Jakarta: Indonesian Petroleum Association, 1996.
[47] GENRICH J F, BOCK Y, MCCAFFREY R, et al. Distribution of slip at the northern Sumatran fault system[J]. Journal of Geophysical Research, 2000, 105(B12): 28327-28341.
[48] BRADLEY K E, FENG L, HILL E M, et al. Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra[J]. Journal of Geophysical Research, 2017, 122(1): 572-591.
[49] MUKTI M M. Structural complexity in the boundary of forearc basin-accretionary wedge in the northwesternmost Sunda active margin[J]. Bulletin of the Marine Geology, 2018, 33(1): 1-14.
[50] PESICEK J D, THURBER C H, ZHANG H, et al. Teleseismic double-difference relocation of earthquakes along the Sumatra-Andaman subduction zone using a 3-D model[J]. Journal of Geophysical Research, 2010, 115(B10): 1-20.
[51] KIMURA G. Oblique subduction and collision: Forearc tectonics of the Kuril arc (Pacific)[J]. Geology, 1986, 14(5): 404-407.
[52] KLINGELHOEFER F, GUTSCHER M A, LADAGE S. Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling[J]. Journal of Geophysical Research, 2010, 115(B1): 1-23.
[53] LE PICHON X, LYBÉRIS N, ANGELIER J, et al. Strain distribution over the Mediterranean Ridge: A synthesis incorporating new Sea-Beam data[J]. Tectonophysics, 1982, 86(1/2/3): 243-274.
[54] WESTBROOK G K, LADD J W, BUHL P, et al. Cross section of an accretionary wedge: Barbados Ridge complex[J]. Geology, 1988, 16(7): 631-635.
[55] SILVER E A, REED D L, TAGUDIN J E, et al. Implications of the north and south Panama thrust belts for the origin of the Panama orocline[J]. Tectonics, 1990, 9(2), 261-281.
文章导航

/