油气勘探

松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式

  • 柳波 ,
  • 孙嘉慧 ,
  • 张永清 ,
  • 贺君玲 ,
  • 付晓飞 ,
  • 杨亮 ,
  • 邢济麟 ,
  • 赵小青
展开
  • 1.东北石油大学“陆相页岩油气成藏及高效开发”教育部重点实验室,黑龙江大庆 163318;
    2.中国石油吉林油田公司,吉林松原 138000
柳波(1983-),男,山西大同人,博士,东北石油大学教授,主要从事有机质富集机理、非常规油气地质学研究。地址:黑龙江省大庆市高新区火炬新街孵化大厦1座,东北石油大学“陆相页岩油气成藏及高效开发”教育部重点实验室,邮政编码:163318。E-mail:liubo@nepu.edu.cn

收稿日期: 2020-05-13

  网络出版日期: 2021-05-21

基金资助

国家自然科学基金“陆相页岩油储层孔隙结构非均质性成因及其对烃类赋存相态的影响”项目(41972156)

Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China

  • LIU Bo ,
  • SUN Jiahui ,
  • ZHANG Yongqing ,
  • HE Junling ,
  • FU Xiaofei ,
  • YANG Liang ,
  • XING Jilin ,
  • ZHAO Xiaoqing
Expand
  • 1. Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing 163318, China;
    2. PetroChina Jilin Oilfield Company, China National Petroleum Corporation, Songyuan 138000, China

Received date: 2020-05-13

  Online published: 2021-05-21

摘要

以松辽盆地南部长岭凹陷白垩系青山口组一段富有机质页岩为例,基于岩石矿物、岩心薄片、测试分析、测井数据及钻井地质等多种资料分析,对大型坳陷陆源碎屑湖盆细粒沉积体系的岩性岩相、储集物性和页岩油富集模式进行研究。结果表明,半深湖—深湖区高有机质丰度薄片状页岩相相较于中有机质丰度块状泥岩相具有更好的生烃潜力,发育的页理缝在超压背景下提供了有效储集空间;三角洲外前缘周期性变迁的沉积背景和发育的底流搬运沉积形成了纹层状页岩相发育区,中有机质丰度纹层状页岩相相较于低有机质丰度纹层状页岩相具有相对较好的生烃潜力,生成的石油微运移至砂质纹层富集。其中,具有超低渗透块状泥岩相作为顶底板封隔层、保存条件好、压力系数高、高有机质丰度薄片状页岩相发育的特定相序和区带是“页理型”页岩油富集的条件;处于生油窗并具有微距排烃条件、中有机质丰度纹层状页岩相发育的特定相序和区带是“纹层型”页岩油富集的条件,且具有致密油-“纹层型”页岩油连片分布的特征。图14参30

本文引用格式

柳波 , 孙嘉慧 , 张永清 , 贺君玲 , 付晓飞 , 杨亮 , 邢济麟 , 赵小青 . 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021 , 48(3) : 521 -535 . DOI: 10.11698/PED.2021.03.08

Abstract

The lithology, lithofacies, reservoir properties and shale oil enrichment model of the fine-grained sedimentary system in a lake basin with terrigenous clastics of large depression are studied taking the organic-rich shale in the first member of Cretaceous Qingshankou Formation (shortened as Qing 1 Member) in the Changling Sag, southern Songliao Basin as an example. A comprehensive analysis of mineralogy, thin section, test, log and drilling geologic data shows that thin-layered shale with high TOC content of semi-deep lake to deep lake facies has higher hydrocarbon generation potential than the massive mudstone facies with medium TOC content, and has bedding-parallel fractures acting as effective reservoir space under over pressure. The sedimentary environments changing periodically and the undercurrent transport deposits in the outer delta front give rise to laminated shale area. The laminated shale with medium TOC content has higher hydrocarbon generation potential than the laminated shale with low TOC content, and the generated oil migrates a short distance to the sandy laminae to retain and accumulate in situ. Ultra-low permeability massive mudstone facies as the top and bottom seals, good preservation conditions, high pressure coefficient, and thin-layered shale facies with high TOC are the conditions for “lamellation type” shale oil enrichment in some sequences and zones. The sequence and zone with laminated shale of medium TOC content in oil window and with micro-migration of expelled hydrocarbon are the condition for the enrichment of "lamination type" shale oil. The tight oil and “lamination type” shale oil are in contiguous distribution.

参考文献

[1] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4): 546-560.
JIA Chengzao, ZOU Caineng, YANG Zhi, et al. Significant progress of continental petroleum geology theory in basins of Central and Western China[J]. Petroleum Exploration and Development, 2018, 45(4): 546-560.
[2] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026.
SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.
[3] 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545.
ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545.
[4] 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
[5] 杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探, 2019, 24(5): 560-568.
DU Jinhu, HU Suyun, PANG Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
[6] 柳波, 吕延防, 冉清昌, 等. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J]. 石油与天然气地质, 2014, 35(2): 280-285.
LIU Bo, LYU Yanfang, RAN Qingchang, et al. Geological conditions and exploration potential of shale oil in Qingshankou Formation, Northern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(2): 280-285.
[7] LIU B, WANG H, FU X F, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432.
[8] 胡素云, 陶士振, 闫伟鹏, 等. 中国陆相致密油富集规律及勘探开发关键技术研究进展[J]. 天然气地球科学, 2019, 30(8): 1083-1093.
HU Suyun, TAO Shizhen, YAN Weipeng, et al. Advances on continental tight oil accumulation and key technologies for exploration and development in China[J]. Natural Gas Geoscience, 2019, 30(8): 1083-1093.
[9] 吴河勇, 林铁峰, 白云风, 等. 松辽盆地北部泥(页)岩油勘探潜力分析[J]. 大庆石油地质与开发, 2019, 38(5): 78-86.
WU Heyong, LIN Tiefeng, BAI Yunfeng, et al. Analyses of the mudstone (shale) oil exploration potential in North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 78-86.
[10] 柳波, 石佳欣, 付晓飞, 等. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 2018, 45(5): 828-838.
LIU Bo, SHI Jiaxin, FU Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-383.
[11] 黄文彪, 邓守伟, 卢双舫, 等. 泥页岩有机非均质性评价及其在页岩油资源评价中的应用: 以松辽盆地南部青山口组为例[J]. 石油与天然气地质, 2014, 35(5): 704-711.
HUANG Wenbiao, DENG Shouwei, LU Shuangfang, et al. Shale organic heterogeneity evaluation method and its application to shale oil resource evaluation: A case study from Qingshankou Formation, southern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(5): 704-711.
[12] 赵宁, 黄江琴, 李栋明, 等. 远源缓坡型薄层细粒浊积岩沉积规律: 以松南西斜坡大布苏地区青一段地层为例[J]. 沉积学报, 2013, 31(2): 291-301.
ZHAO Ning, HUANG Jiangqin, LI Dongming, et al. Sedimentary laws of thin-layer, fine-grain turbidites of distance-gentle slope: A case from the 1st member of Qingshankou Formation in Dabusu area of west slope, south Songliao Basin[J]. Acta Sedimentologica Sinica, 2013, 31(2): 291-301.
[13] LIU B, ZHAO X, FU X, et al. Petrophysical characteristics and log identification of lacustrine shale lithofacies: A case study of the first member of Qingshankou Formation in the Songliao Basin, Northeast China[J]. Interpretation, 2020, 8(3): 1-38.
[14] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[15] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
[16] ABARGHANI, A, GENTZIS, T, SHOKOUHIMEHR M, et al. Chemical heterogeneity of organic matter at nanoscale by AFM-based IR spectroscopy[J]. Fuel, 2020, 261(1): 116454.
[17] CURTIS M E, CARDOTT B J, SONDERGELD, C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103(1): 26-31.
[18] 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455.
YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455.
[19] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
[20] 陈章明, 张树林, 万龙贵. 古龙凹陷北部青山口组泥岩构造裂缝的形成及其油藏分布的预测[J]. 石油学报, 1988, 9(4): 7-15.
CHEN Zhangming, ZHANG Shulin, WAN Longgui. The formation of structural fissures in the mudstone in Qingshankou Group in the northern part of Gulong Sag and a forecast of the distribution of oil and gas pools[J]. Acta Petrolei Sinica, 1988, 9(4): 7-15.
[21] NYGÅRD R, GUTIERREZ M, BRATLI R K, et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks[J]. Marine and Petroleum Geology, 2006, 23(2): 201-212.
[22] DOWNEY M W. Evaluating seals for hydrocarbon accumulations[J]. AAPG Bulletin, 1984, 68(11): 1752-1763.
[23] INGRAM G M,URAI J L. Top-seal leakage through faults and fractures: The role of mudrock properties[C]//APLIN A C,FLEET A J,MACQUAKER J H S. Muds and mudstones: Physical and fluid flow properties. London: Geological Society Special Publications, 1999: 125-135.
[24] WANG H, WU T, FU X, et al. Quantitative determination of the brittle-ductile transition characteristics of caprocks and its geological significance in the Kuqa Depression, Tarim Basin, western China[J]. Journal of Petroleum Science and Engineering, 2019, 173: 492-500
[25] SIBSON R H. Fault rocks and fault mechanisms[J]. Geological Society of London Journal, 1977, 133(3): 191-231.
[26] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399, 454.
ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454.
[27] 侯启军, 冯子辉, 邹玉良. 松辽盆地齐家—古龙凹陷油气成藏期次研究[J]. 石油实验地质, 2005, 27(4): 390-394
HOU Qijun, FENG Zihui, ZOU Yuliang. Study on the pool-forming periods of oil and gas in Qijia-Gulong Sag in Songliao Basin[J]. Petroleum Geology & Experiment, 2005, 27(4): 390-394.
[28] 付晓飞, 王朋岩, 吕延防, 等. 松辽盆地西部斜坡构造特征及对油气成藏的控制[J]. 地质科学, 2007, 42(2): 209-222.
FU Xiaofei, WANG Pengyan, LYU Yanfang, et al. Tectonic features and control of oil-gas accumulation in the west slope of Songliao Basin[J]. Chinese Journal of Geology, 2007, 42(2): 209-222.
[29] LUO X, VASSEUV G. Overpressure dissipation mechanisms in sedimentary sections consisting of alternating mud-sand layers[J]. Marine and Petroleum Geology, 2016, 78: 883-894.
[30] 柳波, 吕延防, 孟元林, 等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义: 以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2015, 42(5): 598-607.
LIU Bo, LYU Yanfang, MENG Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
文章导航

/