油气勘探

基于积分数学-地质模型定量评价伸展断层侧向封闭性

  • 吕延防 ,
  • 胡欣蕾 ,
  • 金凤鸣 ,
  • 肖敦清 ,
  • 罗佳智 ,
  • 蒲秀刚 ,
  • 姜文亚 ,
  • 董雄英
展开
  • 1.东北石油大学地球科学学院,黑龙江大庆 163318;
    2.中国石油大港油田公司,天津 300280;
    3.中国石油大庆油田公司第四采油厂,黑龙江大庆 163511
吕延防(1957-),男,吉林德惠人,博士,东北石油大学教授,主要从事油气藏形成与资源评价工作。地址:黑龙江省大庆市开发区发展路184号,东北石油大学地球科学学院713室,邮政编码:163318。E-mail: 571128lyf@nepu.edu.cn

收稿日期: 2020-07-30

  网络出版日期: 2021-05-21

基金资助

国家自然科学基金项目“碎屑岩地层中不同结构断层岩封闭能力定量评价”(41872153); 东北石油大学科研启动基金“断层停止活动后对油气形成封闭时间的确定”(1305021839)

Quantitative evaluation of lateral sealing of extensional fault by an integral mathematical-geological model

  • LYU Yanfang ,
  • HU Xinlei ,
  • JIN Fengming ,
  • XIAO Dunqing ,
  • LUO Jiazhi ,
  • PU Xiugang ,
  • JIANG Wenya ,
  • DONG Xiongying
Expand
  • 1. College of Earth Sciences, Northeast Petroleum University, Daqing 163318, China;
    2. PetroChina Dagang Oilfield Company, Tianjin 300280, China;
    3. No.4 Oil Production Plant, PetroChina Daqing Oilfield Company, Daqing 163511, China

Received date: 2020-07-30

  Online published: 2021-05-21

摘要

基于断-储排替压力差评价伸展断层侧向封闭机理,考虑成岩时间对断层岩成岩压力及成岩程度的作用效果,建立成岩时间对成岩压力的积分数学-地质模型,定量计算伸展断层的侧向封闭能力。通过对断层岩和围岩地层承受垂向应力及水平地应力的时间积分计算,确定具有与断点断层岩相同泥质含量和成岩程度的围岩的埋深,结合研究区所建立的岩石泥质含量、埋藏深度和排替压力的相关关系,定量计算出断点断层岩的排替压力;用目的盘储集层排替压力与之比较,定量评价伸展断层的侧向封闭性及封闭能力大小。通过渤海湾盆地南堡凹陷1号构造区内断层油气藏实际资料的验证,以及与未考虑或简单考虑成岩时间的断-储排替压力差法断层侧向封闭性评价结果进行对比,显示积分数学-地质模型计算得到的结果与地下实际情况最为接近,预测烃柱高度与实际烃柱高度误差仅0~8 m,可行性最高。图9表1参28

本文引用格式

吕延防 , 胡欣蕾 , 金凤鸣 , 肖敦清 , 罗佳智 , 蒲秀刚 , 姜文亚 , 董雄英 . 基于积分数学-地质模型定量评价伸展断层侧向封闭性[J]. 石油勘探与开发, 2021 , 48(3) : 488 -497 . DOI: 10.11698/PED.2021.03.05

Abstract

To evaluate the lateral sealing mechanism of extensional fault based on the pressure difference between fault and reservoir, an integral mathematical-geological model of diagenetic time on diagenetic pressure considering the influence of diagenetic time on the diagenetic pressure and diagenetic degree of fault rock has been established to quantitatively calculate the lateral sealing ability of extensional fault. By calculating the time integral of the vertical stress and horizontal in-situ stress on the fault rock and surrounding rock, the burial depth of the surrounding rock with the same shale content and diagenesis degree as the target fault rock was worked out. In combination with the statistical correlation of clay content, burial depth and displacement pressure of rock in the study area, the displacement pressure of target fault rock was calculated quantitatively. The calculated displacement pressure was compared with that of the target reservoir to quantitatively evaluate lateral sealing state and ability of the extensional fault. The method presented in this work was used to evaluate the sealing of F1, F2 and F3 faults in No.1 structure of Nanpu Sag, and the results were compared with those from fault-reservoir displacement pressure differential methods without considering the diagenetic time and simple considering the diagenetic time. It is found that the results calculated by the integral mathematical-geological model are the closest to the actual underground situation, the errors between the hydrocarbon column height predicted by this method and the actual column height were 0-8 m only, proving that this model is more feasible and credible.

参考文献

[1] LARSEN R M, BREKKE H, LARSEN B T, et al. Structural and tectonic modelling and its application to petroleum geology[M]. Norway: Norwegian Petroleum Society Special Publications, 1992: 325-342.
[2] PEI Y W, PATON D A, KNIPE R J, et al. A review of fault sealing behaviour and its evaluation in siliciclastic rocks[J]. Earth-Science Reviews, 2015, 150: 121-138.
[3] LINDSAY N G, MURPHY F C, WALSH J J, et al. Outcrop studies of shale smears on fault surfaces[J]. Special Publications of the International Association of Sedimentologists, 1993, 15: 113-123.
[4] WEBER K J, MANDL G, PILAAR W F, et al. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures[R]. OTC-3356-MS, 1978.
[5] FRISTAD T, GROTH A, YIELDING G, et al. Quantitative fault seal prediction: A case study from Oseberg Syd[J]. Norwegian Petroleum Society Special Publications, 1997, 7(97): 107-124.
[6] YIELDING G, FREEMAN B, NEEDHAM T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6): 897-917.
[7] FOXFORD K A, WALSH J J, WATTERSON J, et al. Structure and content of the Moab Fault Zone, Utah, USA, and its implications for fault seal prediction[J]. Geological Society London Special Publications, 1998, 147(1): 87-103.
[8] YIELDING G. Shale gouge ratio-calibration by geohistory[A]// KOESTLER A G, HUNSDALE R. Hydrocarbon Seal Quantification. Oslo, Norwegian: NPF Special Publication, 2002, 11(2): 1-15.
[9] BRETAN P, YIELDING G, JONES H. Using calibrate shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin, 2003, 87(3): 397-413.
[10] 吕延防, 黄劲松, 付广, 等. 砂泥岩薄互层段中断层封闭性的定量研究[J]. 石油学报, 2009, 30(6): 824-829.
LYU Yanfang, HUANG Jinsong, FU Guang, et al. Quantitative study on fault sealing ability in sandstone and mudstone thin interbed[J]. Acta Petrolei Sinica, 2009, 30(6): 824-829.
[11] 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316.
LYU Yanfang, WANG Wei, HU Xinlei, et al. Quantitative evaluation method of fault lateral sealing[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316.
[12] 付晓飞, 方德庆, 吕延防, 等. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学——中国地质大学学报, 2005, 30(3): 328-336.
FU Xiaofei, FANG Deqing, LYU Yanfang, et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J]. Earth Science—Journal of China University of Geosciences, 2005, 30(3): 328-336.
[13] 吕延防, 沙子萱, 付晓飞, 等. 断层垂向封闭性定量评价方法及其应用[J]. 石油学报, 2007, 28(5): 34-38.
LYU Yanfang, SHA Zixuan, FU Xiaofei, et al. Quantitative evaluation method for fault vertical sealing ability and its application[J]. Acta Petrolei Sinica, 2007, 28(5): 34-38.
[14] HUBBERT M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953, 37(8): 1954-2026.
[15] SMITH D A. Sealing and nonsealing faults in Louisiana Gulf Coast Salt Basin[J]. AAPG Bulletin, 1980, 64(2): 145-172.
[16] GRAULS D J, BALEIX J M. Role of overpressures and in situ stresses in fault-controlled hydrocarbon migration: A case study[J]. Marine and Petroleum Geology, 1994, 11(6): 734-742.
[17] 史集建, 李丽丽, 付广, 等. 盖层内断层垂向封闭性定量评价方法及应用[J]. 吉林大学学报(地球科学版), 2012, 42(s2): 162-170.
SHI Jijian, LI Lili, FU Guang, et al. Quantitative evaluation method and application of vertical sealing property of faults in caprock[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(s2): 162-170.
[18] BROWN E T, HOEK E. Technical note trends in relationships between measured in-situ stress and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211-215.
[19] 赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1265-1271.
ZHAO Dean, CHEN Zhimin, CAI Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1265-1271.
[20] TONG H M. A new model for the origin and evolution of the rift basin fault-systems in the east and south China: A case study from Beibuwan Basin[R]. Ankara: Tectonic Crossroads: Evolving Orogens of Eurasia-Africa- Arabia Conference, 2010.
[21] 马良. 南堡凹陷油气运聚动力学模拟及有利勘探目标预测[D]. 北京: 中国地质大学, 2009.
MA Liang. The dynamics simulation on migration and accumulation of oil-gas prediction of exploration targets in Nanpu Depression, Bohai Bay Basin, China[D]. Beijing: China University of Geosciences, 2009.
[22] 汤建荣, 王华, 孟令箭, 等. 渤海湾盆地南堡凹陷地层压力演化及其成藏意义[J]. 地球科学, 2016, 41(5): 809-820.
TANG Jianrong, WANG Hua, MENG Lingjian, et al. Pressure evolution and its effect on petroleum accumulation in Nanpu Sag, Bohai Bay Basin[J]. Earth Science, 2016, 41(5): 809-820.
[23] 曹中宏, 张红臣, 刘国勇, 等. 南堡凹陷碳酸盐岩优质储层发育主控因素与分布预测[J]. 石油与天然气地质, 2015, 36(1): 103-110.
CAO Zhonghong, ZHANG Hongchen, LIU Guoyong, et al. Main control factors and distribution prediction of high-quality carbonate reservoirs in the Nanpu Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2015, 36(1): 103-110.
[24] 付广, 李世朝. 被断裂破坏泥岩盖层封闭性演化史恢复方法及其应用[J]. 地球科学, 2017, 42(9): 1590-1598.
FU Guang, LI Shizhao. Restoration method of closed evolution history of fractured mudstone cap rock and its application[J]. Earth Science, 2017, 42(9): 1590-1598.
[25] 徐珂, 戴俊生, 商琳, 等. 南堡凹陷现今地应力特征及影响因素[J]. 中国矿业大学学报, 2019, 48(3): 570-583.
XU Ke, DAI Junsheng, SHANG Lin, et al. Characteristics and influencing factors of in-situ stress of Nanpu Sag, Bohai Bay Basin, China[J]. Journal of China University of Mining & Technology, 2019, 48(3): 570-583.
[26] 万涛, 蒋有录, 董月霞, 等. 南堡凹陷1号构造带油气成藏研究[J]. 石油天然气学报, 2011, 33(8): 26-30.
WAN Tao, JIANG Youlu, DONG Yuexia, et al. Studying on hydrocarbon accumulation stages and its process in the 1st tectonic belt of Nanpu Depression[J]. Journal of Oil and Gas Technology, 2011, 33(8): 26-30.
[27] 王思琦, 鲜本忠, 万锦峰, 等. 南堡凹陷滩海地区东营组和沙河街组一段储层特征及其成因机制[J]. 东北石油大学学报, 2015, 39(4): 54-62.
WANG Siqi, XIAN Benzhong, WAN Jinfeng, et al. Reservoir characteristics and controlling factors in the offshore areas, the Eocene Period of the Nanpu Sag[J]. Journal of Northeast Petroleum University, 2015, 39(4): 54-62.
[28] 胡欣蕾, 吕延防, 付广, 等. 南堡凹陷1号构造断层垂向封闭能力定量评价[J]. 地球科学, 2019, 44(11): 3882-3893.
HU Xinlei, LYU Yanfang, FU Guang, et al. Quantitative evaluation of fault vertical sealing ability of 1st structure in Nanpu Sag[J]. Earth Science, 2019, 44(11): 3882-3893.
文章导航

/